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SUMMARY
We describe a package of practical tools and libraries for manipulating graphs and their drawings. Our
design, which aimed at facilitating the combination of the package components with other tools, includes
stream and event interfaces for graph operations, high-quality static and dynamic layout algorithms, and
the ability to handle sizable graphs. We conclude with a description of the applications of this package to a
variety of software engineering tools. Copyright c
 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

Graphs are appropriate models for many problems that arise in computer science and its
applications. Graph drawings are a useful way of depicting these models, and so graph
visualization has found many applications in the design and analysis of communication
networks, linked documents, and the static and dynamic structure of programs. Thus, there is
a need for tools to display and manipulate graphs.

Much work in graph manipulation and visualization has focused either on high-level
interactive editors or on low-level graph libraries, and the usefulness of both is well
established. A middle approach is offered by filters, which read and process an input stream,
and produce an output stream. Filters have proven useful in many areas, such as in text
processing, program compilation, and digital signal processing. They serve as a computational
model for many scripting and functional languages, and are well-suited to tasks that focus on
symbolic, language-based computation, and for the automation of repetitive tasks. Manual
interactive editors fall short in this area.

This paper describes a toolkit of graph filtering and rendering tools. In the toolkit, filters
are on an equal footing with interactive tools. We have not assumed that all programs have a
graphical user interface (GUI). This is important because in many situations, language-based
programmable tools are an invaluable alternative to interactive tools that must be controlled
manually [1]. In principle, this should not be not a fundamental issue in library design because
modularity favors layering GUI features over basic data structures. But in practice, systems
have not always been designed this way. For example, base graph objects may refer to callback
functions whose types are defined in a large, complex GUI client library. Such an occurrence
is probably more a matter of implementation convenience than an intractable design flaw, but
details can make a big difference in practice, when tools are created and used.
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2 E.R. GANSNER AND S.C. NORTH

Table I. Toolkit components

Libraries
Libgraph attributed graph data structures and I/O
Dynagraph incremental layout library

Layout Tools
Dot hierarchical layout
Neato “symmetric” layout

Graphical Tools
Dotty programmable interactive graph editor
Tcldot, Webdot related interactive front ends
Grappa compatible graph package in Java
Montage generic ActiveX diagram container
Tcldg/Dged Tcl/Tk graph editor for incremental layout

Graph Filters
Gpr generic graph filter
Sccmap decomposes graphs into strongly-connected

components
Colorize computes node colors from initial seeds
Unflatten adjusts edges to improve aspect ratio of

hierarchical layouts

Creating a common set of graph filters requires sharing graph data. There have been
proposals for a standard graph file language [2, 3], but none is widely accepted. The challenge
is to find a common graph model that fits a broad range of algorithms and programs. Some
of the key decisions include: the typing and encoding of attributes; whether to support
multi-graphs, hybrid graphs (having both directed and undirected edges), subgraphs and
other higher-order objects (hyperedges and compound edges), edge ports, and syntactic or
semantic constraints. Some systems need dynamic graph editing in addition to static graph
descriptions. Moreover, programmers seek not only generality, but also efficiency and ease of
implementation. So it has been difficult to achieve a consensus on a graph model to underlie
a common file language.

With these ideas in mind, we created a toolkit of libraries and programs for creating,
filtering, displaying and interacting with graphs. The toolkit contains base libraries for
handling attributed graphs; a collection of graph layout algorithms; platform-dependent front-
ends; and a complement of file-stream graph processors. The main components are given in
Table I.

After discussing related work, this paper describes the various components of our system
in detail, providing rationale for the design of the toolkit. It then discusses a wide range of
software engineering tools that have been based on the toolkit.

Related Work

Rowe et al.’s graph editor, Grab[4], was the first interactive system described in
the literature. It exemplified first-generation systems with hard-wired layout and display
algorithms and very limited programming interfaces. As such, it lacked the degree of
extensibility and reusability that were developed in later systems, but proved that a generic
graph editor can be an important software engineering tool.

Newbery and Tichy’s Edge system[2] was notable in being the first object-oriented graph
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AN OPEN GRAPH VISUALIZATION SYSTEM 3

editor toolkit described in the literature, and the first to employ a flexible graph data language
for inter-tool communication. The editor could be customized at the C++ object level. This
characterizes second-generation systems. Although it pioneered key design concepts in graph
visualization tools, it was not refined enough as a practical re-usable software component to
fully demonstrate the significance of these ideas.

GraphEd[5] and the Tom Sawyer Software Graph Editor Toolkit[6] were also introduced
as well-engineered second-generation systems with APIs to enable addition of new layout
algorithms and customization to create task-specific tools. Both led to more flexible third-
generation systems integrated with generic graphics and interprocess communication toolkits
(such as Tcl/Tk in the case of GraphEd’s successor Graphlet[3], or Win32/OLE and
Java for Tom Sawyer Toolkit). Da Vinci [7] has a user-interface component with a hard-
wired hierarchical layout algorithm including some advanced features such as collapsing of
subgraphs into nodes and incremental layout. It also uses Tcl/Tk as an extension language,
where an external program defines task or application-specific semantics. The focus in these
tools seems to be on defining a powerful, extendible graph editor, and somewhat less on
creating a general framework for construction of stream-oriented tools.

Also of note are libraries for prototyping or implementing graph algorithms. Mehlhorn and
Näher’s LEDA[8] is a C++ data structure library that has a graph class as one of its main
components. Knuth’s GraphBase project[9] was designed for experiments in programming
combinatorial algorithms. Neither LEDA or GraphBase deal with issues of inter-tool
communication. LINK[10], written by Berry, Dean, Goldberg, Shannon and Skienna, is
an interactive graph environment in Scheme/Tk. The intended application is teaching and
exploring discrete mathematics. Its rich set of programming primitives and libraries includes
support for hypergraphs. Although LINK does not have any built-in layout algorithms, it is
easy to see how external layout servers could be tied in. However, without automatic layout,
its application to software visualization is limited.

Libraries

Our toolkit contains two libraries, Libgraph and Dynagraph, for low-level tool construction.
Libgraph supports reading, writing and manipulating graph abstractions, allowing fine-
tuning of performance-critical code. Dynagraph is layered on top of Libgraph and realizes
a framework for displaying incrementally changing graphs. Both share a common graph
specification language.

File Language

Libgraph embodies a common attributed graph data language for graph manipulation tools.
Embedding tool-specific data and command syntax in graph descriptions makes it difficult
to write compatible graph filters. By delegating graph file I/O to Libgraph, graph tools are
syntactically compatible by default. (The Libgraph language is conventionally known as the
Dot format, after its best-known application.)

We made several engineering decisions based on our earlier experience with the Dag layout
program. Although Dag defines a custom layout specification language, we observed that
most commands simply define graph objects and their attributes; the few exceptions describe
actions on sets of objects. Thus, the Dot language provides syntax for defining (named and
anonymous) graphs, nodes and edges, plus the ability to attach string-valued name-attribute
pairs to graph components. Sets of objects are modeled as subgraphs.
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4 E.R. GANSNER AND S.C. NORTH

Sample graph files are exhibited in Figure 1.

digraph G {
a -> b;
a -> x -> y -> z;
node28 -> {node29,node30,node31};

}

graph ER {
node [shape=box]; course; institute; student;
node [shape=ellipse]; {node [label="name"] name0; name1; name2;}

code; grade; number;
node [shape=diamond,style=filled,color=lightgrey]; "C-I"; "S-C"; "S-I";

name0 -- course;
code -- course;
course -- "C-I" [label="n",len=1.00];
"C-I" -- institute [label="1",len=1.00];
institute -- name1;
institute -- "S-I" [label="1",len=1.00];
"S-I" -- student [label="n",len=1.00];
student -- grade;
student -- name2;
student -- number;
student -- "S-C" [label="m",len=1.00];
"S-C" -- course [label="n",len=1.00];

fontsize=20;
label = "\n\nEntity Relation Diagram\ndrawn by NEATO";

}

Figure 1. Sample files in Dot format

A user can specify tool arguments and options either by setting certain attributes in graph
files or by command-line options. The default behavior for tools is to simply pass through
any attributes not explicitly operated upon. Thus cooperating tools can communicate through
oblivious intermediate filters.

For example, to indicate a subgraph whose nodesa,b,c,d are constrained to the same
rank (level) in a leveled graph, we write

subgraph H {rank = same; a b c d}

Tools that deal with rank assignments need to search for and process such subgraphs, while
other tools will ignore this subgraph.

Reliance on attributes to specify command options also requires a bit of cooperation
between tools to avoid attribute name conflicts. In practice we have not seen conflicts because
we have only a few central tools, their functions are usually orthogonal, and they were written
by a small group of programmers in close cooperation.
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AN OPEN GRAPH VISUALIZATION SYSTEM 5

Another decision in the language design was to favor convenience over safety. The graph
language has an intuitive, forgiving syntax so users can edit graphs with text editors and
write generator scripts easily. All attributes are strings; there are no other data types. (Early
in this project, we experimented with automatically converting an external attribute to native
representation at runtime, but this presented complications in C because of its reliance on
pointers�. So we made it the responsibility of programmers to perform data conversions.)

Programming Model

Since the library already incorporates an external graph model, it seemed reasonable to
extend this into an application programming library for graphs. To be effective, the library
needed to be expressive yet simple; provide regularity in function names and types; maintain
orthogonality among the operations; and give the programmer the ability to write highly
efficient code when necessary.

The resulting library provides an in-memory representation of graphs as described in Dot,
with graphs, nodes, edges and string-valued attributes. Graph components can be created
explicitly, or read from a file. The library provides a basic set of operations on graphs, such
as asking how many nodes a graph has, or traversing all of the out edges of a node. When
possible, a single function (e.g.,agraphof ) is used to provide properties applicable to all
component types, whether graphs, edges or nodes. In order for the programmer to tune an
algorithm, the library provides efficient access to attribute values and fine-grained control
over memory and sets of objects. This is described in more detail below.

Table II lists Libgraph’s primitives.
Libgraph contains no application-specific data. In external files this information is

contained in string-valued attributes. To implement algorithms efficiently, it is helpful if these
attributes can be stored in memory in native format (including not only character strings, but
also booleans, integer and floating point numbers, arrays and records). Libgraph provides a
flexible, efficient, although unsafe, mechanism that allows applications to attach any number
of records to a graph object. These records can have programmer-assigned names, usually
corresponding to a data type. There is a way of finding named records, and also a way of
locking a (unique) pointer within each object onto a given record. This design allows layering
of C libraries, and also allows programs to operate on attributes in native format directly, and
without function calls, in procedures where performance is critical.

Libgraph’s implementation involves set maintenance: graphs have node and subgraph sets,
and nodes have in- and out-edge sets (per containing graph or subgraph). Libgraph relies on
Vo’s Libcdt[12] for set operations. Libcdt supports both hashed and ordered sets, but Libgraph
uses ordered sets only. (Hashing is appropriate for working with large graphs and can be
enabled specifically.) Sets are indexed both by external identifier (usually node name), and
by an object ID assigned sequentially in order of creation. The latter feature is important for
creating tools that process graphs without scrambling their contents.

Libgraph employs interfacedisciplinesas exemplified in Libcdt and SFIO [13] to allow an
application to tailor its functions at runtime. The disciplines allow the programmer to control:

� memory management
� the file channel interface
� the object ID allocator
� object event callbacks

�The SWIG interface generator [11] demonstrates an approach to a similar problem.
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6 E.R. GANSNER AND S.C. NORTH

Table II. Libgraph primitives

Types
Agraph t graph or subgraph
Agnode t; node
Agedge t; edge
Agdesc t; kind, e.g.strict, directed
Agdisc t; resource discipline
Agsym t; attribute symbol table entry
Objects
Agraph t *agraphof(void*); get container graph
char *agnameof(void*); get name string
ulong AGID(void *obj); get internal ID
int AGTYPE(void *obj); get object type
Graphs and subgraphs
Agraph t *agopen(char *name, Agdesc t kind, Agdisc t *disc); create
int agclose(Agraph t *g); destroy
Agraph t *agread(void *file, Agdisc t *); file access
Agraph t *agconcat(Agraph t *g, void *chan, Agdisc t *disc)
int agwrite(Agraph t *g, void *file);
int agnnodes(Agraph t *g),agnedges(Agraph t *g); find size
Agraph t *agsubg(Agraph t *g, char *name, int createflag); bind subgraph
Agraph t *agfstsubg(Agraph t *g), agnxtsubg(Agraph t *); search subgraphs
Agraph t *agparent(Agraph t *g),*agroot(Agraph t *g); move in subgraph tree
Nodes
Agnode t *agnode(Agraph t *g, char *name, int createflag); create node
Agnode t *agidnode(Agraph t *g, ulong id, int createflag);
Agnode t *agsubnode(Agraph t *g, Agnode t *n, int createflag); bind in subgraph
Agnode t *agfstnode(Agraph t *g), *agnxtnode(Agnode t *n); search nodes
int agdelnode(Agraph t *g, Agnode t *n); destroy
int agrename(Agraph t *g, Agnode t *n, char *newname);
int agdegree(Agnode t *n, int use inedges, int use outedges);
Edges
Agedge t *agedge(Agnode t *t, Agnode t *h, char *name, int createflag); bind edge
Agedge t *agsubedge(Agraph t *g, Agedge t *e, int createflag); bind in subgraph
int agdeledge(Agraph t *g, Agedge t *e); destroy
Agnode t *aghead(Agedge t *e), *agtail(Agedge t *e); get endpoints
Agedge t *agfstedge(Agnode t *n), *agnxtedge(Agedge t *e, Agnode t *n); search edges
Agedge t *agfstin(Agnode t *n), *agnxtin(Agedge t *e);
Agedge t *agfstout(Agnode t *n), *agnxtout(Agedge t *e);
int agflatten(Agraph t *graph, int flag); linearize edge sets
String Attributes
Agsym t *agattr(Agraph t *g, int kind, char *name, char *value); bind attribute
Agsym t *agattrnxt(Agraph t *g, int kind, Agsym t *attr); search attributes
char *agget(void *obj, char *name);
int agset(void *obj, char *name, char *value);
Records
void *agnewrec(Agraph t *g, void *obj, char *name, unsigned int size); create record
Agrec t *aggetrec(void *obj, char *name, int move to front); find
int agdelrec(Agraph t *g, void *obj, char *name); remove
Callbacks
Agcbdisc t *agpopdisc(Agraph t *g); install callback functions
void agpushdisc(Agraph t *g, Agcbdisc t *disc); remove
void agmethod(Agraph t *g, void *obj, Agcbdisc t *disc, int initflag); invoke super-method
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AN OPEN GRAPH VISUALIZATION SYSTEM 7

Event callbacks are a powerful mechanism that allows independently-designed modules
to communicate about graph events. For example, a display module can rely on callbacks
to update layouts, while other modules update graphs via Libgraph primitives. This style of
programming is employed in Tcldot, described in a following section.

Dynamic Layout Managers

Dynamic layout is needed when a program wishes to handle graph changes incrementally.
This happens in interactive graph editing, or when visualizing dynamic graph data, or when
browsing subsets of large graphs by incremental navigation.

To support dynamic layout managers with Libgraph, we defined a new interface called
Dynagraph. Architecturally, the Dynagraph interface is layered over Libgraph. A Dynagraph
layout manager provides on-line layout service for a specific class of diagrams. For example,
the DynaDAG program maintains hierarchical layouts incrementally, and other libraries have
been created for orthogonal and force-directed layouts.

A Dynagraph layout manager communicates with an external agent (typically a graphical
interface) by means of client function calls and resulting layout event callbacks. The available
function calls (and symmetrically, callback events) are:

open,close a dynamic layout
insert, modify, delete an object
control event delivery

The event delivery control permits batching of events through event queues. Any sequence
of input events may be queued before requesting callback events to update the graph diagram
display. This capability is essential for loading or importing external diagrams atomically, and
allows interactive control over redrawing.

Figure 2 shows an animation sequence from the DynaDAG layout manager, reflecting a
sequence of node and edge insertions.

Retrospect

Libgraph supports primarily stream-based graph tools and efficient in-memory operations.
Some of its features clearly represent attempts to engineer around language features
that C lacks but are found in more modern languages. Some examples are inheritance,
polymorphism, and object initialization and finalization. Ongoing work is aimed at capturing
Libgraph’s model in an object-oriented, compiled language. Grappa (described in a later
section) is a Java implementation, and the C++ graph template library of Lee, Lumsdaine and
Siek[14] partly addresses the problem of cleanly managing the typed attributes necessitated
by the use of multiple libraries.

Areas where we have contemplated improvements include:

� typed file attributes. For example, intrinsic support for arrays and records would
remove a burden from application code.

� higher-order objects. Libgraph’s only higher-order objects are subgraphs. (These could
be considered directed hyperedges, as the order of object insertion into subgraphs
is stored.) A more natural notation for hyperedges and compound edges would be
reasonable. But C programming seems to require trading off type-safety against the
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8 E.R. GANSNER AND S.C. NORTH

(a) (b)

(c) (d)

Figure 2. Example DynaDAG animation sequence

number of interface functions. For example, type-safe functions to create, search,
modify, and delete binary edges might require individual functions for every pair of
endpoint types.

� on-line operations. Graph files are static. In recent experiments with dynamic layouts,
we modified Libgraph’s parser to work line-by-line, and added new commands for
synchronization of communication streams between clients and servers.

� semantic constraints. These could range over some simple syntactic constraints (“all
nodes in this subgraph must havecolor=red or degree � 4”), to sophisticated
tests (“this subgraph must be planar”). The consequent problem of how to incorporate
executable code in graph descriptions seems to be at least partially solved by new
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AN OPEN GRAPH VISUALIZATION SYSTEM 9

language platforms for mobile networked code that allow downloading constraint-
checkers at runtime.

Layout Tools

Graph layout tools are the cornerstone of our system. The main layout tools are Dot (for
directed graphs) and Neato (for undirected graphs). These are stream-oriented programs
that read graphs, compute layouts, and write the graphs either as layouts in a graphics
language (PostScript, GIF, etc.) or as attributed graphs whose objects have associated layout
coordinates. The layout programs can operate either as stream tools, or as layout servers to
interactive interfaces.

The primary goal of our layout tools has been to provide good diagrams of reasonable size
graphs, and scale well to large graphs. Our criterion for “good” is that drawings should be
as acceptable as ones a human might make with a manual drawing editor. “Reasonable” size
means no larger than what fits on a single screen or printed page with readable labels; this
means perhaps 50 or 100 nodes. When graphs are much larger, additional interaction or layout
techniques are often needed to cope with visual complexity.

Dot[15] makes hierarchical layouts of directed graphs. It is a successor to Dag[16] and
incorporates the general approach of Warfield, Carpano, and Sugiyama et al. [17, 18, 19]
though most of its sub-heuristics are new.

Dot makes good layouts and provides an assortment of shapes, styles, and colors
appropriate to software engineering diagrams. For example, for drawing data structure graphs,
Dot can format nodes as nested box lists, with ports for connecting pointers to boxes that
represent record fields. Dot also incorporates an algorithm for drawing graphs withclusters
or recursive node set partitions [20]. Clusters at the same nesting level are drawn in non-
overlapping rectangles. The intended applications are in diagrams of hierarchical structures,
such as nested source code modules. Figure 3b shows a Dot layout for the graph in Figure 3a.
Figure 4 is a layout of a finite state machine, and Figure 5 shows a distributed program drawn
as a clustered graph.

For some tasks involving undirected graphs (such as the entity-relationship database
schema graph of Figure 6), layouts that emphasize path distance and symmetry seem better
than hierarchical layouts. Force-directed placement has been applied successfully to this
problem. Neato is an undirected graph embedder that uses the virtual physical model of
Kamada and Kawai [21] (closely akin to layout by multidimensional scaling [22]). Neato is
compatible with Dot to the extent of accepting the same input files and command line options.
The user interface tool Dotty (described in the next section) can switch between either of the
two by changing the path name of the layout server.

Interface Components

The primary interactive tool is Dotty, a browser that can display graph layouts and incorporate
them in user interfaces for external programs. Dotty can be controlled either through a
WYSIWYG interface, or through a text (procedural) interface. As a stand-alone tool, Dotty is
similar in operation to other systems based on treating pictures of graphs as structured objects.
GRAB, EDGE, GraphEd, Graphlet and da Vinci are some well-known examples. Like these
tools, Dotty provides menu and pointer-driven graph operations.

The procedural interface is convenient for algorithmic operations. A simple example would
be to merge two graphs. The procedural interface allows for re-programming the graphical

Copyright c
 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,00(S1), 1–5 (1999)
Prepared usingspeauth.cls



10 E.R. GANSNER AND S.C. NORTH

digraph G f
size ="4,4";
main [shape=box]; /* comment */
main -> parse [weight=8];
parse -> execute;
main -> init [style=dotted];
main -> cleanup;
execute -> f make string; printf g
init -> make string;
edge [color=red];
main -> printf [

style=bold,label="100 times"
];
make string [label="make a nnstring"];
node [

shape=box
style=filled
color="blue"

];
execute -> compare;

g

(a)

main

parse

init

cleanup

printf

100 times

execute

make a
string

compare

(b)

Figure 3. A sample graph description and its layout

interface at the script-language level. This turned out to be a good decision. For example,
the left mouse button can be bound to a function that highlights all edges attached to the
node under the mouse pointer. The underlying programming language has primitives to start
external processes and to establish interprocess communication channels. This enables Dotty
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Figure 4. Dot drawing of a finite state machine
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Figure 5. Dot drawing of communication in a distributed program

to operate as a front-end for other processes. In this context, graphs can represent state
information maintained by a back-end process, and user actions can be bound to functions
that translate graph operations to corresponding state change requests sent to the back-end.

Dotty is an application written in the Lefty[23] graphical editor. Lefty programs are
written in a scripting language (also called Lefty) whose semantic level is about the same as
conventional scripting languages (Visual Basic, Unix shell, Tcl/Tk). Lefty has string variables
with automatic runtime conversion for arithmetic, associative arrays, hierarchical namespaces
for organizing code and data, and functions with arguments and local variables. Its standard
environment includes function libraries for working with files and processes, and a collection
of common graphical widgets such as canvases with scroll bars, dialog boxes and file selection
widgets. Like most similar programming systems, Lefty runs on a variety of popular window
systems. Lefty has a small library of C code specifically for supporting graph editors.

Dotty itself is constructed as two co-operating processes, Dot and Lefty. Lefty runs Dot to
make graph layouts. These programs communicate via pipes, as shown in Figure 7, with the
process hierarchy indicated by the graph of rectangles, files drawn as ellipses, and pipes and
sockets shown as circles.

A disadvantage of our design is that sometimes the same function must be provided by two
different applications. For example, both Dot and Dotty need to render nodes, but Dotty has
a different language, running in a different environment, and so does not use Dot’s drivers.
This opens a hole for incompatibility between Dot’s renderer and Dotty’s.
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12 E.R. GANSNER AND S.C. NORTH
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Figure 6. A layout from Neato

On the other hand, Dotty shares many of the virtues of the best alternative scripting
languages. For example, like Tcl/Tk, Python and Perl, it is very portable, and hides low-level
details such as fonts and color maps.

Tcldot and Tcldg

After we wrote Dotty, other scripting languages with graphics toolkits became widespread.
One of these, Tcl/Tk[24], is portable and is supported by an active community that has created
many extension packages for graphics and networking. Tcldot combines our graph tools with
Tcl.y Specifically, it binds Libgraph functions to Tcl commands, and has internal functions
for rendering graphs in Tk canvases. Tcldot is essentially Dotty in Tcl, where the base graph
editor is customized by loading scripts and extensions. Although Dot is linked in as a library,
communication is still handled through graph string attributes.

Tcldot introduced graphics drivers for GIF and HTML image maps to our tool set. Webdot
is an interesting application of this facility. It is a CGI script, written in several hundred
lines of Tcldot code, to display graphs in remote web pages. Image maps provide a way of
employing a graph’s nodes as a user interface for web navigation.

To support dynamic layouts, a new user interface toolkit, Tcldg, was written in Tcl/Tk. The
renderer is not specifically bound to Tk, so other devices such as Pad++[25] can be used as
well. The Tcl script writer has control over all interactions and events that relate base graphs,
dynamic graph layouts, and canvas objects. This provides considerable flexibility to script
authors. Further details can be found in [26]. Tcldg was created specifically to prototype
distributed network management systems for the MONET project [27], and incorporates an

yTcldot and Tcldg were written by John Ellson, Lucent Corp.
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Figure 7. A Dotty session

interesting notion of distributed namespaces for graph objects shared among graph editors
running on separate host computers.

Grappa

Grappa[28] is a graph package written in Java. It was created to provide graphical
interaction with graphs through web browsers, integrated with other Java packages. Figure 8
shows an example of a Grappa display.

Grappa has classes for graph representation, presentation, and communication with layout
services (via a Dot language parser). Grappa is extendible in the sense that application-
dependent classes can be defined naturally as sub-classes of Grappa object classes. Although
Grappa does not share any code with the rest of our system, it adheres to Libgraph’s model
and file language, including Dot’s conventions for graphical symbols and attributes, and so
fits in well with the other graph processing tools.

Grappa’s user and API interfaces are well-engineered, but Java applet performance is
a serious problem on current platforms when downloading graphs that have hundreds of
objects. For example, on a typical high-end personal computer or workstation, downloading
and initializing the display of a telecommunications network that has about 1200 nodes and
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14 E.R. GANSNER AND S.C. NORTH

Figure 8. A Grappa session

1800 edges takes about 75 seconds of wall-clock time. The overhead of initializing tens of
thousands of Java objects is thought to be the bottleneck.

Montage

Encouraged by some success in applying graph drawings in user interfaces and software
engineering documentation, we considered how to integrate graph tools with applications in
Microsoft Windows. Although Lefty and Tcldot run in MS-Windows, they do not use its
native graphics toolkits, nor do they communicate well with document editors such as Word.
Even simple operations, such as placing a static graph layout in a document, are not intuitive.

In MS-Windows, interactive graphical programs can communicate using a protocol called
ActiveX (formerly called Object Linking and Embedding, or OLE [29], that descended
from a cut-and-paste facility). This protocol supports embedding of graphical clients inside
containers (servers), by defining object types and messages to handle program activation,
graphical events, persistence, etc.

After studying what would be needed to build an ActiveX layer for programs like Lefty,
we decided instead to write a new front-end for MS-Windows, building on native graphics
and inter-application communication toolkits. This front end is named Montagez. It acts
either as a client or top-level frame, and allows a dynamic layout manager to control the
placement of embedded objects, that may have their own frames (such as nodes, that may
also be ActiveX applications), or are frameless (as with edges in graph layouts). Montage

zWritten by Gordon Woodhull, formerly at U.C. Berkeley.
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also supports application toolbars, and there is a way for external programs to access graph
objects. Thus, Visual Basic programs should eventually fill the role that Lefty scripts play in
Dotty. Figure 9 shows a sample session in Montage, in which a graph records the sites visited
and the links traversed in a web browser. By clicking on a node, the user causes the browser
to go to the corresponding site.

Figure 9. A Montage Internet Explorer session

Graph Filters

The toolkit provides a collection of functions for manipulating and analyzing graphs as filters,
thus providing something of an algebra of operators on graph objects. We view this as one of
the main design features of our toolkit. Having a good variety of flexible filters available, the
user can construct many applications in a high-level scripting language, simply combining
these and other general-purpose filters.

We describe some of the more interesting filters below.

Gpr

Gpr is a graph filter, modeled after Unix’s AWK and SED utilities[30, 31]. Foreach input
graph, Gpr selects a subgraph and then generates the output graph as a function of this
subgraph and the input graph.
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16 E.R. GANSNER AND S.C. NORTH

A selection is found by iterating over all nodes and edges, testing a fixed predicate on
each. Predicates are given as command-line arguments. This gives Gpr an interface that is
convenient for graph-transforming commands and scripts. Also for convenience, a command
line option can select the whole input graph.

Gpr’s predicate evaluator has regular expression matches and arithmetic computation. It is
based on Fowler’s Libexpr[32] that provides these features. Primitive values in expressions
may be constants (strings and numbers), graph object attributes, or one of the pseudo-
attributes listed in Table III. Pseudo-attributes are actually built-in functions that refer to local
syntactic properties such as graph object names or degrees. These are useful properties, but
not immediately available from Libgraph’s string attribute interface.

Gpr’s next step generates an output graph, taking the input graph and the selected subgraph
as operands. The permitted operations are:

� add induced edges to the selection
� update attributes of nodes or edges in the selection
� contract the selected subgraph into a node
� contract paths in the input graph into edges
� replace the selection with its transitive reduction

These operations are convenient for pre-processing graphs with Gpr before layout. Some
examples may clarify Gpr’s usage. To double the weight of all blue edges:

gpr -e color=’blue’ -i -E "weight = weight * 2"

To perform path compression, as when simplifying data or control flow graphs:

gpr -n "(indegree != 1) || (outdegree != 1)" -p

To find the transitive reduction of a graph:

gpr -c -t

Applying transitive reduction[33] is a plausible way to attack complexity in large, dense
graphs, whose layouts can be hard to read. The argument for applying this algorithm as a filter
is that removing edges implied transitively by other paths does not change reachability (at
least in acyclic graphs, where the transitive reduction is unique). It would be interesting to find
evidence to prove or disprove whether this is an effective reduction for specific tasks involving
large graphs. Figure 10 shows the effect of running this algorithm on a module dependency
graph. The graph has 241 nodes and was reduced from 791 to 255 edges. Although both
drawings are the same size, the latter is much cleaner and provides a much better view of the
graph structure.

Gpr’s design favors convenience (for a few operations) over flexibility. To give Gpr the
power of language-based utilities like AWK and Perl, it might be changed to embody
a language in which a programmer could set the sequence and composition of filtering
operations. This seems to be a promising direction for further development. Another, perhaps
complementary, approach is suggested by Tarjan’s path expressions[34], a depth-first-search
framework in which certain common graph algorithms can be succinctly defined.

Sccmap

Another approach to attacking the complexity of large graphs is to decompose them
into smaller graphs. In some situations, decomposition into strongly connected components
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Figure 10.gpr -t applied to a module dependency graph

(SCC’s) is helpful. The Sccmap filter reads a graph stream, breaking each input graph into a
list of its SCC’s along with the reduced graph whose nodes correspond to the SCC’s of the
original graph and with the induced edge set. Figure 11 is a before-and-after example. Part (a)
shows the original graph; part (b) shows the graph consisting of the four strongly connected
components. For certain applications, this much smaller graph exhibits most of the essential
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Table III. Pseudo-attributes

nodes
name (string)
indegree (number)
outdegree (number)

edges
tail (string)
head (string)
tailindegree (number)
tailoutdegree (number)
headindegree (number)
headoutdegree (number)

structure of the original.

Colorize

In graph layouts, graphical attributes such as node color and shape can encode relationships
other than the one represented by the graph’s edges, which usually determine geometric
position. For example, a drawing of the call graph of a profiled program could use color to
encode the time spent in each function. This typifies the use of color to get more information
into a layout by encoding additional variables. Appropriate choice of graphical styles can also
reinforce the primary edge relation, which also seems desirable since redundant encodings
may ease some graphical tasks (cf. Earnshaw[35]). In many situations, of course, color simply
makes graphical designs seem more interesting and appealing. This is not necessarily bad,
but caution is needed since unnecessary complexity can conflict with accurate, informative
visualization[36].

To assist in the application of color to graph visualization, Colorize is a stream tool that
assigns node colors. It expects input graphs to have at least a few nodes with assigned
colors. Taking these as seed values, it applies breadth-first-search to “push” colors across
edges, applying them to initially uncolored nodes. Colors blend where flows meet. This
technique can combine visual reinforcement of edge relations with the encoding of some other
relationship through choice of seed colors. Further, Colorize can also ramp color saturation
smoothly across levels in a layered graph. This way of applying colors emphasizes level
assignment.

An example of Colorize output is shown in Figure 12. This is a diagram of a family of
software projects, showing interdependencies. The major family divisions are architecture,
software configuration management, databases and visualization, represented by the four
nodes at the bottom of the graph, each with its own color. As nodes interconnect up the graph,
the colors blend, giving a visual clue (even on the monochrome figure here) as to where an
application fits among the family divisions.

Unflatten

The Unflatten filter adjusts a directed graph to improve its layout aspect ratio. If a graph
has many leaves or disconnected nodes, the layout produced by Dot will generally be very
wide or tall. Unflatten adjusts a graph to improve layout compaction. In particular, it attempts
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Figure 11. Strongly connected component analysis
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Figure 12. Colorize applied to a graph of software packages

to stagger leaf nodes and disconnected nodes by inducing (invisible) edges between them.

Experiences

Reliance on simple, concise interfaces and an extendible architecture promotes rapid
development of new applications by integrating existing external components with the graph
system. Prototypes can often be built in a day or two, then refined incrementally.

The range of programs and projects that have used graph filtering and visualization
components tends to validate the flexibility of the system architecture and the usefulness
of the individual tools. In the domain of software engineering, parts of our toolkit have been
used to create tools for specification, testing, distribution, reverse engineering and software
process management. The toolkit has also been used for projects in network planning and
engineering, security and web page analysis.

In this section, we describe in detail a few applications built using our graph analysis and
visualization components.

Structure Repositories

One framework that has proven powerful is that of a structure repository. The basic idea is
that, for a given class of structured documents, e.g., program source code in a given language
or web pages in HTML, one can create a model of the key structural entities, their attributes
and the relations between them. One then builds a document analyzer that parses a collection
of documents belonging to the given class, and generates a repository capturing the modeled
components and associations.
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Once the repository is built, a user can filter a repository to create derived views, to display
views, and to perform queries on interesting structures within views. Although views can be
presented in tabular form, one can take advantage of the duality between a relation and a
graph to provide directed graph views. A graph presentation greatly helps in understanding
the relationships between entities. In addition, the graph can be made an active part of the
user interface, as a convenient mechanism for navigation and querying.

The relation-graph duality arises also when querying and filtering views. Often, the desired
filtering is best posed as a graph manipulation. For example, to simplify a view, one may
want to see the transitive reduction of the graph, removing all relations that can be derived
from transitive closure. Conversely, in a repository modeling a program, one may desire to
construct the transitive closure of a “uses” relation, starting from the program entry point.
Anything not occurring in the closure can be considered dead code.

This framework has been implemented[37] and has been applied in many settings, as will
be described below. For a given document class, someone must construct a model for the
class, essentially an entity-relationship database schema, and write an analyzer that extracts
the required information from a document. Our toolkit provides the core facilities for graph
manipulation and display across all instances of the framework. To create a visualization
subsystem tailored to a given document class, the user provides the schema, the graphical
attributes (e.g., fonts, colors, shapes) of nodes and edges corresponding to entities and
relationships in the schema, and the appearance and actions of the graphical interface. An
instance compiler then takes these specifications and generates the complete visualization
environmentx.

Software Engineering

Graphs are a ubiquitous data representation in computer science and therefore not
surprisingly, in software engineering. They occur throughout software development, from
requirements and specifications to testing and maintenance. They are used to specify system
structure and semantics, provide a graphical view of source code structure and relations, and
describe the processes, both human and machine, that compose the building and execution of
software. They form the basis of the models used in most object-oriented analysis and design
methodologies (cf. UML[38]).

Components of our toolkit have been used in tools supporting most aspects of software
engineering. Although some of these tools have remained research prototypes, others have
been used in production systems, handling hundreds of files and hundreds of thousands of
lines of code.

Reverse Engineering

Reverse engineering is the task of discovering the structure and semantics of a program
from implementation artifacts. Typically, artifacts include program source, and sometimes no
supporting documentation. One cannot rely on the original system designers or implementors,
as it is not unusual for them to be unavailable or to have forgotten their design and coding
decisions.

One approach to this task is to analyze source code for certain language constructs, such
as variables, functions and files that form the program, and determine the relations between

xThe user also supplies certain database information and the instance compiler generates all of the query facilities as well.
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Figure 13. The reachability graph of the classPool

these constructs, such as function call and data access dependency. Based on this information,
one can deduce higher-level program structure and discern how the program works.

For programs and libraries written in C and C++, the Acacia[39] system provides support
for this type of analysis. Acacia is an instance of the repository framework described above.
It blends a special-purpose parser and semantics analyzer for C and C++, to produce the
repository, with parts of the toolkit tailored to graphs of program entities. The user can employ
these to explore the program structure graphs, looking at type dependencies, the include file
hierarchy, or, in the case of C++, the class inheritance graph. A typical graph view from
Acacia is shown in Figure 13, representing those entities reachable from a given C++ class.

Certain graph-based analyses are common and important enough that Acacia provides built-
in tools for performing them. These include forward and reverse reachability analysis for
determining subsystem dependencies and unnecessary include file detection.

When exploring a software system, one sometimes wants to know the set of components
that some other collection of components depends on, for example, in order to decompose
a system into subsystems or libraries. In particular, this information is necessary in order to
extract a subsystem for separate inclusion elsewhere. Alternatively, one may need to learn
what components could be affected by changing some given component. These functions are
provided in Acacia as semantics-based transitive closure operators on the program graph.

A common problem in legacy C programs in the accumulation of unnecessary include
files. These usually arise when code structure is altered without re-evaluating which include
files are still required. They also occur from programmers naively adding include directives
until compilation succeeds. This problem has only been exacerbated by C++, which requires

Copyright c
 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,00(S1), 1–5 (1999)
Prepared usingspeauth.cls



AN OPEN GRAPH VISUALIZATION SYSTEM 23

complete prototypes for all functions used. It is not uncommon for 10-35 percent of include
files to be unused.

Unnecessary include files also complicate reverse engineering, as they increase the number
of components and relations, and imply associations where none actually exist beyond the
inclusion. This problem can also affect the software build process. As the initial phases of
compilation, especially preprocessing and lexical analysis, often predominate, removal of
unneeded include files decreases build time. Again, in C++ environments that rely on nested
include files, the gain is even more dramatic.

Acacia provides the necessary graph analyses[40] to partition the set of include files into
three categories. An include file can be necessary for compilation; unused; or incidental, in
that its immediate contents are not necessary, but it includes, directly or indirectly, a necessary
include file.

Acacia is only one instantiation of the structure repository framework. Others have been
built for Java[41], the Korn shell scripting language and other programming and system
languages{.

Debugging

When looking for a bug or analyzing the dynamic behavior of code, it can be helpful
to see a trace of the function calls taking place during execution. This facility is provided
by Xray[42]. It instruments the code, executes it to gather a trace log, and then combines
this data with the static information derived from Acacia. The execution trace can then be
animated, using a function call graph view. Basic graph edges indicate that one function calls
another. The color of an edge indicates the currently active functions on the call stack, plus
how frequently the particular function call has been made. At one end of the spectrum, this
highlights which edges are never traversed during the execution. At the other end, the system
highlights edges of heavy activity, as determined by a user-supplied threshold, indicating
points that might greatly benefit from further analysis and optimization. The tool has been
effective in uncovering inefficiencies and exposing bugs in a variety of programs.k

Specification

Graphs can also play a role at the other end of the software development process, during
the requirements and specification phases. One example of this occurs in telephone switching
equipment. The switching community has found it advantageous to describe the interaction of
switching components using formal methods. This provides a high-level model in which the
system can be analyzed and verified during analysis. One way of specifying system semantics
is by a language such a LOTOS[44], which provides a process algebra of event sequences.

To assist software engineers, who are sometimes unfamiliar with formal techniques, a
prototype programming environment was constructed for a subset of the LOTOS language.
A system description written in LOTOS corresponds to a collection of finite-state machines.
Thus, as with the structure repository, the environment presents both a text view and a graph
view. The latter provides a more natural, familiar representation to an engineer of how the
system will act. In addition, it can provide a view of a system simulation, in which the
current state of each component is highlighted. Interestingly, this environment was written in

{http://www.research.att.com/˜ ciao/
kThe recent Deet debugger[43] builds extensively on the high-level toolkit approach advocated here, and has been integrated
with Dotty to display linked data structures and other program information.
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SML[45], using the eXene[46] graphics library while relying on the graph toolkit for layout
and other graph algorithmic support. A more closed architecture would have greatly restricted
such mixing of implementation languages.

Process

Auxiliary to the main stream of software development are various activities supporting the
development process itself. In these activities, graphs modeling processes provide a unifying
theme. Our toolkit has been used to develop tools to model these activities.

A software process is a set of tasks, partially ordered (by time), that must be completed
as part of the development of a software system. The tasks include the main development
stream (from analysis and design to coding to testing) but also involve related activities
such as documentation, staffing and business case analyses. The tasks may involve multiple
subgroups within an organization, and may involve both humans and machines. Often, the
software process reflects a chosen development methodology.

Improvise[47, 48] is a system for modeling and analyzing software processes. Since a
software process is represented as a partially ordered set, the user interface to Improvise
is naturally the corresponding attributed graph. A user can interact with the graph, adding
annotations to the nodes and edges to describe the process or log progress. The annotations
are not limited to text, but can include multimedia information (e.g., a video showing how
a task should be accomplished) or executable actions. The user can also specify static and
dynamic constraints on the node and edge attributes.

At the machine process level, it is useful to have a tool to monitor system process execution
over multiple machines in real-time. This is provided by the VPM tool[49], which displays
relevant processes, their host machines and their use of system resources. Displaying a graph,
VPM uses nodes to represent processes, open files, plus special interprocess communication
mechanism such as pipes and sockets. Resources restricted to a single machine are clustered
together. VPM does not use a logging mechanism or specially instrumented code to gather its
data, but traces system calls directly. For system debugging purposes, however, it can generate
a log, which can be played back and analyzed off-line.

Other areas

Sometimes, applications for the toolkit come from unexpected sources. Ship[50] is a system
for managing the distribution of (possibly mutually dependent) software components as the
components change over time. For each client site, it maintains a record of the versions at
that site. When a new version of some software is available, Ship determines what is the
most effective way to deliver the software to a client, depending on how much software has
changed and the transport mechanism (uucp, rcp, ftp, etc.) used to deliver it. Typically, this
involves sending a collection of incremental updates.

Managing the software versions contained in the Ship data base is simplified by the
Shipview tool[51]. This presents a collection of systems, versions and files as a directory
hierarchy, with node color indicating the current status of a package version vis-a-vis its
integration into the database. A user can browse the data base structure, exposing or hiding
directory detail. Clicking on a file node brings up a view of the file’s contents, the viewing
method based on the file’s type. Using parts from the toolkit, plus other readily available
software tools, Shipview was built in a couple of hundred lines of code in about an hour.
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Network Planning

Applications increasingly rely on web browser interfaces. An advantage is that database
operations and analysis can be performed on a central server that provides consistency,
reliability and security, while basic user interface functions can be performed locally to ensure
good interactive response. A key architectural problem is how application-specific data is
exchanged between clients and servers.

Figure 14 shows a typical display from a network design application created with stream
graph tools. The initial HTML page of the application asks users to enter two network
endpoints on a form; upon receipt the server invokes a network analysis utility (here, a
max flow algorithm) on a network stored in the server. The result is displayed graphically
in another HTML page. In this context it is clear that back-end graph processors, run from
CGI programs, are always stream based.

To explore an alternative to Grappa’s relatively heavyweight clients, this application’s
display and user interface are programmed as a concise Tcl/Tk script. The script is interpreted
in the browser by a Tcl/Tk plug-in, that must be installed separately. The graph to be
displayed is hard-wired into the script. In our computing environment, the plug-in interface
starts up several times faster than Grappa’s on networks like the one shown in the figure.
Such lightweight scripts are possible because the Tcl/Tk environment provides many built-in
graphics features; on the other hand more elaborate features (such as pan-and-zoom, multiple
views and editable graphs) would need better data structures and substantially more code.
In summary, lightweight GUI scripts have a valuable role, but a class library seems a better
foundation for sophisticated user interfaces.

Graphing the Internet

The growth of the Internet and web pages has provided a new lode of graphs to be analyzed
and displayed. These graphs arise in various contexts. For an Internet service provider,
there is the obvious graph representing network and network traffic. There are also the
graphs representing connections from one URL to another. These graphs can be useful in
restructuring web sites to facilitate useraccess to important pages, for example, by providing
more direct links, and to remove little used pages.

A problem associated with the rapid expansion of the web, coupled with the newness of the
technology and the dynamic nature of the web, is the constant churn of web pages. Web users
will visit a page one day, and when they return the next day, the page may be entirely rewritten
and redesigned. One system for tracking these types of changes is WebCiao[52]. This system
is another instance of the structure repository, this time for the HTML language. To capture
the evolution of a web site, the system uses two analyses of the site at different times,
constructs a view representing the differences between the two repositories, and presents a
graph reflecting these changes. In this manner, a user can quickly spot additions, deletions
and modifications of the URL links. In its WebGUIDE[53] embodiment, the system relies on
an analysis component that supplies both textual and structural changes. If the user is only
concerned about the static structure of a collection of web pages, WebCiao can be applied to
a single repository rather than the difference of two repositories.

Availability

We have described some of the uses to which our toolkit has been applied, focusing
mainly on those within our local environment. The package is freely available on the Web
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Figure 14. A network design application in Tcl/Tk

at http://www.research.att.com/sw/tools/graphviz/ . Some of the other
tools mentioned above can be found athttp://www.research.att.com/sw/tools/ .

Conclusions

We have surveyed the design of a set of compatible graph processing tools, and the toolkit’s
application to software engineering. The tools include filters and interactive programs that can
easily be combined. They provide users with an assortment of implements for manipulating
graphs, and new ones can be introduced easily. In particular, the toolkit’s emphasis on filters
allows many tasks to be handled by combining toolkit components using a scripting language.
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Most inter-tool communication relies on a graph data language that has been implemented
in several common programming environments. This has endowed the tool set with flexibility
and independence from a specific language or system platform.

Based on experience with applications, it is clear that while much progress has been made
in processing and visualizing graphs and networks, many interesting problems remain. From
the standpoint of algorithm engineering, some relevant problems are:

� Which algorithms are the best filters for attacking the complexity of large graphs?
� How can higher-order graph objects be accommodated without compromising

convenience and efficiency?
� What sort of interactive systems are best for prototyping programs that combine abstract

graphs, geometric computation, graphics and external tools?
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