LIBPACK(3) LIBPACK(3)

NAME
libpack — support for connected components

SYNOPSIS
#include <graphviz/pack.h>

typedef enum { |_clust, |_node, |_graph, |_array} pack_mode;

typedef struct {
float aspect; /* desired aspect ratio */
int sz; /* row/column size size */
unsigned int margin; /* margin left around objects, in points */
int doSplines; /* use splines in constructing graph shape */
pack_mode mode; [* granularity and method */
boolean *fixed; [*fixed[i] == true implies g[i] should not be med */
packval_t*\als; [*for arrays, sort numbers */
int flags;
} pack_info;

point* putRects(inhg, boxf* bbs, pack_info* pinfo);
int packRects(inhg, boxf* bbs, pack_info* pinfo);

point* putGraphgint, Agraph_t**, Agraph_t*, pack_info*);
int packGraphgint, Agraph_t**, Agraph_t*, pack_info*);
int packSubgraph@nt, Agraph_t**, Agraph_t*, pack_info*);

pack_mode getkMode (Agraph_t*, pack_mode dflt);
int getRack (Agraph_t*, int, int);

int isConnectedAgraph_t*);

Agraph_t** ccomps (Agraph_t*, int*, char*);
Agraph_t** pccomps (Agraph_t*, int*, char*, boolean®);
int nodelnducgAgraph_t*);

DESCRIPTION
libpack supports the use of connected components in the context of laying out graphs usigcapther
libraries. Oneset of functions can be used todaksngle graph and break it apart into connected compo-
nents. A complementary set of functionsasia collection of graphs (not necessarily components of a sin-
gle graph) which hae been laid out separatelsnd packs them together.

As this library is meant to be used wilbcommon it relies on theAgraphinfo_t Agnodeinfo_tand
Agedgeinfo_used in that libraryThe specific dependencies areegibelow in the function descriptions.

Creating components
Agraph_t** ccomps (Agraph_t* g, int* cnt, char* pfx)
The functionccompstakes a graply and returns an array of pointers to subgraphgwhich are its con-
nected componentntis set to the number of componentspit is non-NULL, it is used as a prefix for
the names of the subgraphs; otherwise, the string_*” is used. Notdhat the subgraphs only contain the

relevant nodes, not ancorresponding edges. Depending on the use, this allows the caller teeretige
information from the root graph.

The array returned is obtained frenmallocand must be freed by the call&he function relies on thmark
field in Agnodeinfo .t

04 APRIL 2009 1

LIBPACK(3) LIBPACK(3)

Agraph_t** pccomps (Agraph_t* g, int* cnt, char* pfx, boolean* pinned)
This is identical taccompsexcept that is puts all pinned nodes in the first component returned. In addition,
if pinnedis non-NULL, it is set to true if pinned nodes are found and false otherwise.

int nodelnduce (Agraph_t* g)
This function takes a subgraghand finds all edges in its root graph both of whose endpoints grdtin
returns the number of such edges and, if this edge is not already in the subgraph, it is added.

int isConnected (Agraph_t* g)
This function returns non-zero if the gragks connected.

Packing components
point* putGraphs (int ng, Agraph_t** gs, Agraph_t* root, pack_inf o ip)
putGraphspacks together a collection of laid out graphs into a single layout whaithsaary overlap. It
takes as inpung graphsgs. For each graph, it is assumed that all the nodes been positioned usingos
and that thexsizeandysizefields hae been set.

If rootis non-NULL, it is taken as the root graph of the subgrastesd is used to find the edges. Other
wise, putGraphsuses the edges found in each grggfi .

For the moded_node |_clust and |_graph, the packing is done using the polyomino-based algorithm of
Freivalds et al. This allows for a fairly tight packing, in which awnpart of one graph might be inserted
into the concee part of another The granularity of the polyominoes used depends on #hege vof
ip->mode If this is|_node a polyomino is constructed to approximate the nodes and edges. If this is
I_clust the polyomino treats topylel clusters as single rectangles, unioned with the polyominoes for the
remaining nodes and edges. If the valuk ggaph the polyomino for a graph is a single rectangle corre-
sponding to the bounding box of the graph.

The modd_nodespecifies that the graphs should be packed as an array.

If ip->doSplineds true, the function uses the spline information inghidield of an edge, if itxd@sts. Oth-
erwise, the algorithm represents an edge as a straight line segment connecting node centers.

The parameteip->margin specifies a boundary afiargin points to be allowed around each node. It must
be non-ngative.

The parameteip->fixed, if non-null, should point to an array ofj booleans. lip->fixed][i] is true, graph
gs[i] should be left at its original position. The packing will first first place all of tteel fgraphs, then fill
in the with the remaining graphs.

The function returns an array of points which can be used as the origin of the bounding box of each graph.
If the graphs are translated to these positions, none of the graph componentsnaifl. oThearray
returned is obtained fromallocand must be freed by the calldrany problem occursputGraphsreturns

NULL. As a dde-efect, at its startputGraphssets thebb of each graph to reflect its initial layout. Note
thatputGraphsdoes not do antranslation or change the input graphs iy etfier way than setting theb.

This function uses thbb field in Agraphinfo_t the pos xsizeandysizefields in nodehinfo_tand thespl
field in Aedgeinfo .t

int packGraphs (int ng, Agraph_t** gs, Agraph_t* root, pack_info* ip)
This function taksng subgraphgs of a root graptroot and callsputGraphswith the gven arguments to
generate a packing of the subgraphs. If successful, it thekemndifts the subgraphs to theirweosi-
tions. It returns O on success.

int packSubgraphs (int ng, Agraph_t** gs, Agraph_t* root, pack_info* ip)

This function simply callpackGraphswith the given aaguments, and then recomputes the bounding box of
theroot graph.

04 APRIL 2009 2

LIBPACK(3) LIBPACK(3)

int pack_graph(int ng, Agraph_t** gs, Agraph_t* root, boolean* fixed)
usespackSubgraphso place the indidual subgraphs into a single layout with the parameters obtained
from getPackinfo If successfuldotneato_postprocess called on the root graph.

point* putRects (int ng, boxf* bbs, pack_info* ip)
putRectgacks together a collection of rectangles into a single layout whaitisaary overlap. It tales as
input ng rectangledbs

Its behavior and returralue are analogous to thosepoftGraphs Howeve, the moded_nodeand|_clust
are illegd. ThefieldsfixedanddoSplinef ip are unused.

int packRects (int ng, boxf* bbs, pack_info* ip)
packRects$s analogous tpackGraphsit calls putRectsand, if this is successful, it translates the rectangles
in bbsappropriately.

Utility functions
The library provides seral functions which can be used to tailor the packing based on graph attributes.

pack_mode parsePackModelnfo(char* p, pack_mode dflt, pack_info* pinfo)
analyzesp as a string representation of pack mode, storing the informatipimfim If p is "cluster", it
returnsl_clust for "graph”, it returng_graph for "node", it returng_node for "array", it returnd_array;
for "aspect”, it returnk aspectotherwise, it returndflt. Related data is also storedgmfo.

pack_mode getPackModelnfo(Agraph_t * g, pack_mode dflt, pack_info* pinfo)
This function processes the graphpackmode"attribute, storing the information ipinfo. It returns
pinfo->mode The attribute is processed usipgrsePackModelnfwith dflt passed as the defaulgament.

pack_mode getPackMode (Agraph_t* g, pack_mode dflt)
This function returns pack_modessociated witlg.

int getPack (Agraph_t* g, int not_def int dflt)
This function queries the graph attrib "pack”. If this is defined as a nonggive integey the integer is
returned; if it is defined as "true", the valifit is returned; otherwise, the valnet_defis returned.

pack _mode getPackinfo(Agraph_t * g, pack_mode dflt, int dfltMargin, pack_info* pinfo)
This function calls botlyetPackModelnfaandgePack storing the information irpinfo. dfltMargin is used
for both integer arguments gé&Pack with the result s&ed as pinfo->margin It returnspinfo->mode

SEE ALSO
dot(1), neatqa(1), twopi(1), libgraph (3)
K. Frevads et al., "Disconnected Graph Layout and the PolyomaukiRg Approach”, GD0’01, LNCS
2265, pp. 378-391.

BUGS
The packing does not talnto account edge or graph labels.

AUTHORS
Emden Gansner (erg@research.att.com).

04 APRIL 2009 3

