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ABSTRACT
Graph drawing is a basic visualization tool. For graphs of up to
hundreds of nodes and edges, there are many effective techniques
available. At greater scale, data density and occlusion problems of-
ten negate its effectiveness. Conventional pan-and-zoom, and mul-
tiscale and geometric fisheye views are not fully satisfactory solu-
tions to this problem. As an alternative, we describe a topological
zooming method. It is based on the precomputation of a hierarchy
of coarsened graphs, which are combined on-the-fly into renderings
with the level of detail dependent on the distance from one or more
foci. We also discuss a related distortion method that allows our
technique to achieve constant information density displays.

CR Categories: I.3.5 [Computer Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling H.5.2
[Information Systems]: Information Interfaces and Presentation—
User Interfaces

Keywords: topological fisheye, large graph visualization

1 INTRODUCTION
Drawing graphs is an important information visualization tech-
nique. Common layout styles include force directed, k-layered (“hi-
erarchical”), orthogonal and circular [10, 5]. In this paper, we focus
on force directed layouts.

For graphs of modest size, with dozens of nodes, there are var-
ious layout methods available. In addition, these layouts can be
viewed with ordinary document viewers or graph viewers having
pan and zoom controls. As graphs become larger, however, prob-
lems arise. The first problem is the algorithmic complexity of com-
puting the layout. In recent years, efficient algorithms have been
developed. Useful approaches include virtual physical models [5]
and techniques from linear algebra and statistics [8, 13].

Given the graph layout, visual complexity remains a problem.
Practical data sets can have thousands or even millions of objects.
Even at the low end of that scale, it is not realistic to expect layouts
with text labels of all the objects to be readable, and navigation is
difficult for humans unless the graph has some special structure,
such as a tree. At the high end, the number of objects can even
exceed the number of screen pixels. Clearly, additional techniques
are needed.

Here we consider the problem of the display and interactive ex-
ploration of large graphs. We seek a way of reducing the number of
displayed objects while preserving structural information that is es-
sential to understanding the graph. In particular, we present a new
technique for browsing large graphs whose characteristics include:
(1) the efficient use of available display area; (2) informative detail-
in-context displays; and (3) a variable degree of abstraction while
preserving the graph’s structure.

2 RELATED WORK
Distortion viewing is an obvious candidate for dealing with the
problems of browsing large graphs. Variants of 2-D geometric
fisheye distortion have been described by Lamping and Rao [14],
Sarkar and Brown [20], and Carpendale [2]. These do a good job of
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highlighting a focus area, but make the global structure even more
obscure since it is packed into a much smaller area by the nonlinear
transformation.

We illustrate this method using the 4elt graph [22]. This graph,
of 15,606 nodes and 45,878 edges, is a mesh created to study fluid
flow around a 4 element airfoil. It exhibits extreme variations
in nodal density [23]. A drawing of this graph computed by the
Kamada-Kawai method [12] is shown in Fig. 1. In Fig. 2, we zoom
in on its right hand side using a fisheye lens [2]. This portion is
properly enlarged, at the expense of the rest of the graph that be-
comes very crowded and obscure.

Figure 1: The 4elt graph, |V|=15,606, |E|=45,878.

Figure 2: A fisheye view of the 4elt graph focused on its right hand
side portion.

Another approach, proposed by Munzner, employs 3-D hy-
perbolic projection in an interactive viewer with high guaranteed
frame-rate rendering [17]. This yields highly scalable viewing of
huge trees with a 3-D fisheye effect. Display complexity is lim-
ited by tree depth and rendered node size. The technique is not
intended for general graphs, and its limitations in obscuring areas
of the graph that are distant from the focus are similar to the 2-D
fisheye approach.

Multiscale graph abstraction has also been considered; see, e.g.,
[1, 9, 18]. Such layouts show the global structure well, but navi-
gation is less flexible due to the explicit expansion and contraction
of clusters and, for some methods, the clusters themselves must be
externally provided. Also, the fine structure across distinct clusters
may not be easy to see. In Fig. 3 we show three different levels of
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Figure 3: Approximating the 4elt graph at three different scales of decreasing size and accuracy.

abstraction of the 4elt graph, clarifying its structure at the expense
of hiding some of the local details.

3 TOPOLOGICAL FISHEYE VIEWS
Our technique combines static multiscale display, which excels in
conveying the global structure of graphs, with fisheye display for
the exploration of small regions.

We follow the general concept underlying all fisheye views of
dense, overcrowded data sets. The display shows a detailed view
of a region around a focus that the user chooses, while providing
fewer details as the distance from the focus increases. However, in
contrast with fisheye viewing that relies on a pure geometric trans-
formation, we perform topological, or combinatorial, operations on
the abstract graph. This is a specialized type of semantic zooming
[6].

Specifically, we construct a hierarchy, containing graphs of de-
creasing sizes that approximate the original graph at various levels
of accuracy. For example, consider Fig. 3 again, where a part of
such a hierarchy is presented for the 4elt graph. Given a focal node,
we merge all the graphs in the hierarchy into a single superposition
called the hybrid graph, where the region of interest is taken from
the original graph, and other regions belong to coarser graphs. The
exact graph from which each node is taken depends on its distance
to the focal node.

An example for the 4elt graph is seen in Fig. 4(a). As in the fish-
eye example of Fig. 2, we zoomed in on the right hand-side portion
of the graph. The nodes and the edges are colored in a red-to-green
scale depending on their level in the hierarchy: the red area around
the focal node is directly from the original graph, while the green
section is from the coarsest graph. We can see that the complexity
of the graph is greatly reduced, making closer examination of the
focus region possible. Moreover, the picture does not have overly
dense areas (as frequently happens with geometric distortion; com-
pare Fig. 2) and the global structure of the layout is preserved. In
one click, the user can move the focus, to expand other areas of the
graph and obtain new displays; see Fig. 4(b,c).

Fig. 5 shows two topological fisheye views of a published Inter-
net map [3]. It is a large tree (|V|=87,931, |E|=87,930) made by
tracing connections from a central probe to all reachable IP routers.
The full layout of this graph (Fig. 5(a)) is too dense to read. In
contrast, our approach yields useful views by focusing on different
portions of the graph; Fig. 5(b,c).

In the following sections, we explain how to construct such
views. Our major design goals were to achieve efficient display of
the graph showing its overall structure, to facilitate quick interac-
tive navigation, and to keep the various levels of display consistent
so a mental map of the full graph is preserved.

We assume that we are given a graph whose nodes already have
assigned coordinates, generated by an external graph drawing algo-
rithm or some other means. The initial layout is a faithful drawing
of the full graph. In Section 4, we explain how to create a multiscale
representation of the graph, which is a hierarchy of graphs approx-

imating the original graph at different resolutions. This construc-
tion has a central role in the precision and reliability of our views.
The multiscale representation is constructed once as a preprocess-
ing step. The user then can browse the graph, picking different areas
for more detail inspection. Changing the focus triggers redrawing,
which is done by computing a new hybrid graph, merging different
graphs from the multiscale hierarchy, as explained in Section 5. The
layout of the hybrid graph is derived from the original layout by dis-
tortion to account for its multiple scales, as explained in Section 6.
The method is easily extended to handle several simultaneous focal
nodes; we discuss the key adaptations in Section 7. We conclude
by discussing possible directions for further work in Section 8.

4 MULTI-SCALE REPRESENTATION OF THE GRAPH
The key step in our method is the construction of a multiscale repre-
sentation of the graph. Given a graph with coordinates, we produce
a hierarchy containing coarse graphs of decreasing sizes, approxi-
mating the original graph at multiple levels of precision. For sim-
plicity, we concentrate on the basic step in which a single coarse
graph is created from an input fine graph. To create the full hierar-
chy, we apply this step recursively, taking the previously computed
coarse graph as the next input. Thus we construct a hierarchy of
coarser and coarser graphs until the graph size drops below some
threshold.

There are several ways to perform coarsening. We follow the
common approach where nodes of a coarse graph induce a parti-
tioning of the fine graph, meaning that each coarse node represents
a cluster of fine nodes. Thus, a wide range of clustering algorithms
can be applied to construct the hierarchy. However, when choosing
an algorithm, we need it to satisfy certain special requirements:

1. Coarse graphs should preserve the topological properties of
the fine graph. For example, we should avoid connecting
nodes that are distant in the graph-theoretic sense, and never
create cycles that do not exist in the fine graph.

2. The partitioning of fine nodes induced by a coarse graph
should yield clusters of fairly uniform sizes. In other words,
all nodes of a coarse graph should have about the same “size.”
Otherwise, the coarse graph might be a misleading represen-
tation of the original graph.

3. Layout of the coarse graph should preserve the geometry of
the fine graph. Thus, the layouts of all graphs in the hierarchy
are tightly related, allowing smooth transitions between them.

4. Since we are dealing with large graphs, it is important to use
efficient algorithms, ideally with linear running time.

Note that the first two demands disqualify geometric approaches
based on partitioning the space into cells.

Of course these requirements may conflict, so they cannot be
optimized simultaneously. Our way of trying to satisfy them is
to select a maximal set of disjoint node pairs and contracting (or,
matching) these pairs. Variants of this approach are in common use
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Figure 4: Topological fisheye views of the 4elt graph. Views are based on “hybrid graphs” formed by superposition of several approximations of
the graph. Levels are colored red-to-green, so the focus area from the finest graph is in red. The figure shows three examples, focusing on the
right hand side (a), the small central hole (b), and the left hand side (c).

original graph focus on a top-left portion focus on a bottom portion

Figure 5: This Internet map ((|V|=87,931, |E|=87,930)) is too large to visualize as a flat structure. Two topological fisheye views are shown.
The focused sections in red are the original graph. Peripheral areas, in green, are simplified.

[7, 11, 23]. Contraction of two nodes is done in the usual graph-
theoretic sense: the nodes are identified and the merged node is in-
cident to the union of all edges of the two nodes. Any edge between
the two nodes is deleted.

Before we elaborate on the method, we introduce some defini-
tions and notation. Henceforth, we assume that we are given a
weighted undirected graph G(V = {1, . . . ,n},E,w), with no mul-
tiedges or loops, and where w(i, j) ∈ R+ is the weight of edge
〈i, j〉 ∈ E. As we shall see, the weight of an edge reflects the de-
sired similarity of the two endpoints. Each node i is associated
with point pi (in the layout). The Euclidean distance between pi
and p j is denoted by ‖pi − p j‖. The neighborhood of node i is

Ni
def
= { j ∈ V | 〈i, j〉 ∈ E}. Similarly, Ni

∗ def
= Ni ∪ {i}. The degree

of i, degi, is |Ni|. Each node i of G represents a cluster of nodes of
the original graph. We denote by sizei the cardinality of this cluster.
Consequently, when G is the original graph itself, sizei = 1 for each
i ∈ V . Also, if node k is the result of contracting i and j, we have
sizek = sizei + size j. In addition, if i and j are both connected to a
node l, we have w(k, l) = w(i, l)+w( j, l) in the coarse graph.

Coarsening by contraction is performed in two steps. First,
we construct a candidate set S of node pairs. Usually, |S| =
O(|V |+ |E|), and S contains only those pairs that best qualify for
contraction according to the special requirements we have stated
above. The set S serves both for filtering out unsuitable node pairs
and for accelerating computation by reducing the quadratic num-
ber of possible pairs to a number linear in the graph size. (Usually
|E| = O(|V |), i.e., the graph is sparse. Large dense graphs are in-
herently intractable.) The second step is a selection of a maximal
subset of disjoint pairs from S that will actually be contracted. By
“disjoint pairs,” we mean that we do not allow the same node to
appear in two selected pairs. Here again, we try to choose the best
pairs from S according to the requirements stated above.

This strategy directly addresses two of the four requirements
stated above: computational efficiency and uniformity of cluster
sizes. Efficiency is achieved since the selection process will be per-
formed in time O(|S|). Uniformity is also achieved fairly well; by
contracting disjoint pairs, the clusters are of sizes 1 or 2, and by
choosing a maximal subset of S, we hope that very few clusters are
of size 1. To achieve the two other requirements, namely, preserva-
tion of topological and geometric properties, we need to make smart
decisions about which pairs to contract, both when constructing S
and when selecting the contracted pairs out of it.

Our approach to preserving the topological and geometric prop-
erties of the graph is to contract pairs that are close both in the
graph-theoretic sense and in the geometric sense. Contracting
nodes with large graph-theoretic distance will join two separate ar-
eas of the graph, which causes a dramatic change in the graph’s
topology. For example, consider Fig. 6, where the contraction of
the two gray nodes causes an abrupt change in the topology, intro-
ducing a cycle in the graph’s structure. In fact, if we contract only
nodes whose (unweighted) graph-theoretical distance is 1 or 2, we
can guarantee that no new artificial cycles will appear in the coarse
graph. However, contracting two nodes of distance 3 or more can
introduce a misleading cycle in the coarse graph. It is also obvious
that closeness in the geometric sense is essential; contracting two
nodes that are distant in the layout (meaning, placing them at the
same point) must always substantially alter the layout, violating the
geometric consistency requirement.

A good strategy might have been choosing the contracted pairs
only from the set of edges, so only adjacent nodes can be contracted
and S = E. In fact, most contraction-based methods use this restric-
tion [7, 11, 23]. However, we have found that the edge set does not
provide us enough freedom and hence is not suitable. For exam-
ple, consider a star-like structure in the graph. Since the contracted



!"#$%&'$("#

Figure 6: The effect of contracting nodes with large graph-theoretic
distance: contracting the two gray nodes in the top graph yields a
fundamentally different graph, with a large, new cycle (colored blue).

pairs must be disjoint, only a single pair out of this star can be con-
tracted. Consequently, the coarsening rate will be extremely slow.
Also, large deviations in node size will inevitably appear. To ac-
count for such a situation, we must add more candidate pairs to S.
One possibility is to add all pairs whose graph-theoretic distance is
less than 2 or 3, but then we cannot ensure that |S| = O(|V |+ |E|).
However, thanks to the fact that we have geometric coordinates, we
can use a more efficient solution: add all nodes that are neighbors
in a proximity graph.

A proximity graph is a graph derived from the geometry of a set
of points. There are several variants of proximity graphs [4]. They
all attempt to capture the concept of adjacency relations between
the points. In our case, we work with two such graphs:

• The Delaunay triangulation (DT). Two points are neighbors
in the DT if and only if there exists a sphere such that its
boundary contains these points, and no other point exists in
its interior. An alternative definition of DT is as the dual of
the Voronoi diagram [4], so two points are adjacent in the DT
if their respective Voronoi cells are adjacent.

• The relative neighborhood graph (RNG). Points pi and p j are
neighbors in the RNG if and only if for every point pk:

‖pi − p j‖ ! max{‖pi − pk‖,‖p j − pk‖}

where ‖pi − p j‖ denotes the (Euclidean) distance between pi
and p j. In other words, pi and p j are neighbors in the RNG
when there is no other point that is both closer to pi than p j
and closer to p j than pi. Interestingly, if two points are neigh-
bors in the RNG, then they are also neighbors in the DT.

For 2-D geometry, both the DT and RNG are planar graphs and
can be computed in O(n logn) time [4, 15]. Several good imple-
mentations are available [16, 21]. Fig. 7 shows examples of both
DT and RNG.

The proximity graphs are well suited to coarsening. Our exper-
iments show that contraction of these graphs provides a kind of
“space-decomposition” of the points, where cluster sizes are usu-
ally uniform, and clusters tend to correspond to compact regions
in the drawing. Also, the coarsening rate is good, and typically a
coarse graph is of half the size of the fine graph. Therefore, we
also use the edges of the proximity graph as candidates for contrac-
tion (in addition to the original graph edges). Since neighbors in

a proximity graph might be undesirably far in the graph-theoretic
sense, we remove all pairs whose graph-theoretic distance is above
k, where k is usually 2 or 3.

Which proximity graph should be chosen: the larger DT or the
smaller RNG? The RNG seems more appropriate as it captures a
very appealing notion of closeness. However, computationally, the
DT can be obtained more easily. Also, after removing all nodes
that are distant in the graph-theoretic sense, the difference between
the two graphs is not that significant. Therefore, we cannot pro-
vide a definitive recommendation as to which of these two graphs
should be favored. As a compromise, we construct a graph that
is contained in the DT and contains the RNG, using the following
fast method: we construct the DT, and then we remove any DT-
edge 〈i, j〉 if there is some k adjacent to i or j (in the DT) such that
‖pi − p j‖ > min{‖pi − pk‖,‖p j − pk‖}.

To summarize, we choose the node pairs to be contracted from a
candidate set S comprised of two kinds of pairs:

1. The edges of the graph
2. The edges of a proximity graph (excluding edges whose end-

points are far in the graph-theoretic sense)

Notice that since the proximity graph is planar, its edge set contains
at most 3n−6 edges. Therefore, the cardinality of the candidate set
is still linear in the graph size.

After constructing the set of candidate pairs, we want to contract
a maximal number of disjoint pairs from it. While we could apply
optimal algorithms for maximal matching of candidate pairs, we
prefer a linear time heuristic because computational performance is
critical.

We use the following procedure; related techniques are described
elsewhere [7, 11]. Iterating over all nodes, for each unmatched node
i, we look at the set of candidate pairs containing it, and match it
with an unmatched node j that maximizes a weighted sum of the
following measures:

1. Geometric proximity: 1
‖pi−p j‖

2. Cluster size: sizei + size j

3. Normalized connection strength: w(i, j)√
sizei·size j

, where w(i, j) =

0 if 〈i, j〉 /∈ E.

4. Similarity of neighborhood: |Ni
∗∩N j

∗|
|Ni

∗∪N j
∗|

5. Degree: 1
degi·deg j

Since the different measurements are in different scales, we nor-
malize them all to the range [0,1] as part of the weighting scheme.

The first measure is aimed at preserving the graph’s geometry.
The second encourages uniform node sizes. The third and fourth
measures help to preserving the graph’s topology by contracting
pairs that are tightly related in the graph. The fourth measure also
encourages sparser coarse graphs, which are better both aestheti-
cally and computationally. The last two measures inhibit the for-
mation of high degree nodes, which are formed by contracting two
nodes of high degree into a single node of even higher degree. High
degree nodes are undesirable for several reasons. First, they form
a salient topological feature which we do not want to create arti-
ficially. Second, they obscure readability. And, third, they make
further recursive coarsening more difficult.

Since we deal with graphs having a layout, we need to assign
coordinates to the nodes of the coarse graph as well. We assign a
coarse node the average coordinates of the nodes in its associated
cluster. Specifically, when contracting nodes i and j, with corre-
sponding points pi and p j, respectively, the point associated with
the new node is:

sizei · pi + size j · p j

sizei + size j
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Figure 7: The Delaunay triangulation and relative neighborhood graph of a point set.

Coarsening a single graph takes linear time O(n + |E|). As pre-
viously explained, to build a full hierarchy, we execute this process
recursively until the graph size drops below some threshold (say,
20). If each coarsening cuts the graph size about in half, we get
O(logn) levels in the hierarchy and the total coarsening time is
linear. We should add to this the O(n logn) time needed to con-
struct the proximity graph. In our implementation, this graph is
constructed only once at the original, finest level, and for other lev-
els we estimate it in linear time by coarsening the current proximity
graph. If the coarsening does not significantly reduce the number of
nodes, it is an indication of a degenerate process (as happens with a
star-like graph when contracting only neighbors), and we terminate
it regardless after a predetermined number of levels (50, in our im-
plementation). This degenerate behavior can be an indication that
we were given a low quality layout as input.

In practice, the coarsening phase is clearly the computationally
most expensive part of our method. Typical running times are about
1-4 seconds for graphs with around million nodes on a Pentium-4
PC. However, it is performed only once in the preprocessing stage
that precedes the user interaction.

5 THE HYBRID GRAPH
After the user selects a focal node, we create the hybrid graph,
merging all the graphs in the hierarchy so the focus area is pre-
sented in detail, while more distant portions have a less detailed
representation.

We represent the hierarchy of the coarse graph as a binary tree;
see Fig. 8. Each tree node corresponds to a (coarse) node repre-
senting a set of graph’s nodes. Each leaf corresponds to a unique
graph node, hence level 0 of the tree represents the original graph.
Higher levels of the tree represent coarser graphs, up to the root of
the tree that represents the full node set (or a single node coarse
graph). This way, each graph node is contained in all the tree nodes
on the path from its corresponding leaf to the root of the tree.

Horizontal slices While each tree level represents a single
coarse graph, we use more elaborated horizontal slices to merge
several coarse graphs. For example, consider Fig. 9, where we
show such a slice in the hierarchy tree. This slice implies that
nodes E and F are represented by the level-1 node {E,F}. Nodes A
and D are represented by their corresponding level-0 leaves. And,
nodes C,B,G and H, are represented by their shared level-2 node
{C,B,G,H}. We use the term active nodes to describe the tree
nodes that are immediately above the horizontal slice; in our case:
{E,F},A,D,{C,B,G,H}. These active nodes constitute the node
set of the hybrid graph. Regarding the edge set, we form an edge
between two active nodes when there exists an edge in the origi-
nal graph between two nodes, one in each cluster. Thus, the hybrid
graph in our example contains 4 nodes and 4 edges and is shown in
Fig. 9.
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Figure 8: An 8-node clustered graph and its corresponding hierarchy
tree. Each level in the tree corresponds to a single coarse graph.
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Figure 9: An horizontal slice through the hierarchy tree of Fig. 8.
This induces a 4-node hybrid graph that approximates the original
graph at various levels of accuracy simultaneously.

Determining active nodes By construction, the hybrid
graph is fully characterized by defining the active nodes in the tree.
This is computed by a three-phase process, which we now describe.

Phase 1 - the wish list The first step is to iterate through all
nodes in the original graph and decide in which level of the tree we
would like to represent it. To do so, each of the tree levels has an
associated capacity. We denote the capacity of level i by ci. The
purpose of these capacities is to define how many nodes we want to
represent at each level. Note that as the node is closer to the focus,
we want it to be represented by a lower level tree node, to give it a
finer representation. Therefore, we sort all nodes according to their
distance from the focus, in ascending order. Then, we take the first



c0 nodes in the ordering and associate them with level 0, the next
c1 nodes are associated with level 1, and so on. Thus, we obtain for
each node the desired level in which we would like to represent it.
However, as we will see, this does not yield a final representation
as inconsistencies may arise. Regarding actual level sizes, based on
implementation experience we recommend that c0 be 50–100, so
50–100 nodes are individually represented in the hybrid graph and
form the “focal region” of the graph. For the other levels we use the
rule ci+1 = C · ci, where 2 ! C ! 3.

Phase 2 - making decisions After associating each node
with its desired representation level, we determine the active nodes
(or where the horizontal slice will pass). This is done by a bottom-
up traversal of the hierarchy tree which resolves all potential incon-
sistencies.

How can we get such inconsistencies? Note that the association
of desired levels completely ignored the structure of the hierarchy
tree. Therefore, we may encounter a situation where two contracted
nodes have different desired levels. For example, consider the case
when nodes A and B are contracted into a single level-1 node {A,B}.
If, in the previous phase, A was associated with level 3, and B was
associated with level 4, there is no possible way to achieve both
associations, as the contraction binds the two nodes to the same
representation level. Our way of resolving such conflicts is to asso-
ciate two conflicting nodes with the lower of their two levels. This
way we never associate a node with a representation level higher
than its desired one.

Therefore, we determine active nodes using a bottom-up traver-
sal of the tree. Assume that at some point of the traversal, we en-
counter two nodes A and B in level i whose parent is node C (of
level i+1). The desired representation levels of A and B are lA and
lB, respectively. Without loss of generality, assume lA ! lB. The
behavior of the algorithm is characterized by the following cases:

• lA = i+1
Make C an active node. Do not traverse the ancestors of C.

• lA > i+1
Set lC = lA. One of C’s ancestors will be an active node.

• lA ! i and lB " i+1
Make B an active node (A is already an active node). Do not
traverse the ancestors of C.

In case A is the only child of C, we set lC = lA; C is an active node
if lA = i+1.

Phase 3 - propagating decisions Each node below the hor-
izontal slice is represented by its ancestor active node. (We ignore
nodes above the active nodes as they are irrelevant at this point.)
Therefore, we perform a top-down traversal of the graph, and point
from each node to its active ancestor node.

The time complexity of this entire process is dominated by the
sort-by-distance operation which takes O(n logn) time. In practice,
the execution cost was negligible for all graphs we experimented
with.

Our application does not explicitly construct the hybrid graph,
as for our needs it can be efficiently derived from the coarse graphs
and the active nodes. Specifically, we need to support two opera-
tions: (1) list all nodes of the hybrid graph and (2) list all edges
of the hybrid graph. When we need to list all nodes, we traverse
the hierarchy tree top-down until reaching the active nodes. When
we need to list all edges, we iterate over all active nodes. For each
active node A of level i, we use the coarse graph associated with
level i and scan A’s neighbors in this coarse graph. Then, for each
edge 〈A,B〉 (B is a node of the level-i coarse graph) there are three
possibilities:

1. If B is an active node, add edge 〈A,B〉.
2. If B points to an ancestor, C, which is an active node, add edge

〈A,C〉.

3. If B has descendants which are active nodes, no edge should
be added. The edges will be added when visiting B’s descen-
dants.

6 DISTORTING THE LAYOUT
The final step of our method is the actual display of the hybrid
graph. In this section, we explain how its layout is computed. In
fact, this graph already possesses a default layout, as described in
Section 4, where each of its nodes is assigned the average location
of the nodes in its cluster. However, this layout is not always satis-
factory, because the hybrid graph integrates multiple scales. Con-
sequently, different portions of the original graph get various detail
levels and the layout has a highly nonuniform density – the detailed
focus portion will be very dense, while the peripheral portions will
be much sparser. A typical example of this behavior can be seen
for the Crack graph [19] as shown in Fig. 10(a). When we focus
on one of its central nodes, we get the default layout of the hybrid
graph shown in Fig. 10(b). The detailed focus region (colored red)
is very dense. As the distance from the focus increases, the layout
becomes sparser.

While the default layout is not satisfactory, it certainly embod-
ies several qualities that originated in the layout of the related fine
graph. In fact, we found that default layouts serve very well for
single-scale coarse graphs. Only with a multiscale hybrid graph did
we encounter the nonuniform density problem. In what follows, we
explain how a simple radial distortion can fix this density problem.
The result of applying this distortion to the default layout of the
Crack graph is shown in Fig. 10(c). It is clear that the result is much
more uniform and readable than the original layout in Fig. 10(b).

We will work with polar coordinates, which allows cleaner
expressions as compared with Cartesian coordinates. Assume
that the node set of this graph is {1, . . . ,m} and its layout is
(r1,θ1), . . . ,(rm,θm), where the origin is the focal point. To sim-
plify notation, we assume that the nodes are sorted according
to their distance from the focus, so ri ! ri+1.1 We are look-
ing for some distortion function D , so that the distorted layout
D(r1,θ1), . . . ,D(rm,θm) has a “uniform density.”

We now make the following observation. The hybrid graph
merges several coarse graphs. By our construction of this graph
(see Section 5), it is reasonable to assume that nodes with the same
distance from the focus belong to the same coarse graph. There-
fore, each circle centered at the focus constitutes an equi-density
region. In other words, we expect all points in the default layout
lying at the same distance from the focus to have the same density.
Therefore the density depends only on the radial coordinate, and is
independent of the angular coordinate. This simplifies construction
of the distortion function, which we restrict to act only on the radial
coordinate, so D(r,θ) = (F (r),θ), where F : R → R is the radial
distortion function.

At this point, we need to formulate the notion of density. There
are many ways of measuring density at a point, such as counting
how many points lie inside a small circle centered at the point, or
finding the distance to its closest point. However, working with
a small circle is scale-dependent, as the radius of the circle will
influence the value. Also, measuring the distance to the single clos-
est point is not robust. Our way of obtaining a robust and scale-
independent measure is based on the RNG of the m points (see Sec-
tion 4); other proximity graphs could be used as well. Note that in
dense regions, the RNG edges will be shorter than in sparse regions.
Thus, we define di as the average length of an edge adjacent to i in
the RNG. The value di measures the average distance between i and
its neighbors. The smaller di, the denser the neighborhood of i.

We need only consider the radial component, obtaining a 1-D
problem. Since we can directly measure density only on the m given
points, we discretize our space and assume uniform density inside

1Note that r1 = 0 since the focal point is always associated with a node.



(a) original layout (b) default layout of hybrid graph (c) distorted layout of hybrid graph

Figure 10: The Crack graph [19], |V|=10,240, |E|=30,380. In the hybrid graph, the focus region is colored red. Its default layout is derived
directly from the original layout, and exhibits a very dense focus region. The distorted layout is a uniformly-scattered version of the default
layout obtained by radial distortion.

intervals between consecutive points. These intervals are defined
by:

∆i = [ri−1,ri) i = 1, . . . ,m

where r0
def
= 0.

The density within interval ∆i is interpolated from di−1 and di or,
more robustly, we average the densities di−p, . . . ,di+p−1 for some
p. Thus, we define

d∆i =
di−p + · · ·+di+p−1

2p
. (1)

In our implementation, p = 20. (Near the extremities (i.e., 0 and m)
this definition should be altered, truncating the summation so that
the subscripts remain in the range [0,m]).

Now we can define a radial distortion function which stretches
segments according to their density

F (ri) =
i

∑
j=1

|∆ j|
d∆ j

where |∆ j| = r j − r j−1.
Or, equivalently

F (ri) = F (ri−1)+
|∆i|
d∆i

.

Note that F is an increasing function, therefore our distortion
function D(r,θ) = (F (r),θ) relates the distorted layout to the orig-
inal layout with two properties:

1. Angular coordinates do not change.
2. The order of radial coordinates do not change (so the order of

distances from the origin remains the same).

Sometimes, we want to overemphasize the focal region, and to
enlarge it at the expense of peripheral regions. This can be done
by slightly changing the definition of the radial distortion function,
introducing the distortion factor α:

F (ri) = F (ri−1)+
|∆i|

(

d∆i

)α .

Using α > 1 makes the focus region less dense than other regions,
yielding an effect similar to a classic geometric fisheye view [2]. In
our default setting, we seek uniform density over the whole layout,
so α = 1. (All single-focus layouts shown in this paper were made
this way.) Note that α = 0 means no distortion at all.

The time complexity of computing the distortion is O(m logm)
and is dominated by the time to sort the radial component and the
construction of the RNG. The time complexity is independent of n
(the original number of points), and therefore the distortion takes
negligible time.

7 WORKING WITH SEVERAL FOCI
Our algorithm can easily be extended to handle the case of selecting
multiple foci nodes. Two changes are needed.

The first change is to the hybrid graph construction described in
Section 5. Recall that this construction was based on a three-phase
process. We adjust only the first phase, in which nodes are ordered
and distributed to the different levels. When we have several foci,
we sort the nodes according to their distance from the set of foci
(i.e., the distance between each node and its closest focus). Also,
regarding the level capacities, c1, . . . ,cm, we recommend multiply-
ing all capacities by the number of foci in order to accurately de-
scribe more nodes.

The second change is in the distortion algorithm described in
Section 6. We must now handle several disjoint dense areas, which
invalidates our assumption of equi-density around circles centered
at the focus. Our way of solving this is to distort the layout for each
focal point separately (each time considering only a single focal
point), and then average all of the layouts into a single final layout.
We found this approach to be effective. In the multi-foci case, we
recommend emphasizing the foci areas by slightly increasing the
distortion factor α (defined in Section 6).

Fig. 11 shows views with 2 and 3 foci of three graphs which ap-
peared previously in this work with the same red-green scale show-
ing level of detail. In these examples, we used α = 1.5.

8 FUTURE WORK
The main contribution of our topological fisheye technique is to in-
tegrate the display of the global structure of a graph with a way to
interactively examine local areas in detail. This technique can be
extended in various ways. Although we have only experimented
with 2-D layouts, the ideas can be extended naturally to 3-D. We
also intend to add animation between successive views to help pre-
serve the user’s mental map.

Our implementation is only one possible way of making topolog-
ical fisheye views, with many alternatives worth considering. One
interesting possibility is to combine the display tool with layout cre-
ation. Our design is based on separating layout creation from the
display tool, as we assumed we are given a graph whose nodes al-
ready have assigned coordinates. This separation not only makes
the whole design easier and cleaner, but also facilitates fast navi-
gation, because no costly layout calculations are needed during in-
teraction. Also, all viewpoints are based on the same underlying
layout, which helps to preserve the user’s mental map. However,
the effectiveness of our method strongly depends on the quality of
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Figure 11: Viewing graphs with multiple foci

the given layout, and making a good layout of a huge graph can be
very challenging. Therefore, an alternative would be to tightly inte-
grate the display tool with the layout algorithm, so no global layout
is needed in advance. Instead, the layout of each hybrid graph could
be computed from scratch. This avoids the problem of drawing the
full large graph, as only the much smaller hybrid graphs are drawn.
Of course, this change affects our whole algorithm, as the layout
of the original graph is used extensively in all stages of the process.
Such an integration of the display tool with layout computation will
challenge the interactivity of the tool, as response time will neces-
sarily be longer. Also, as there is no single base layout, layouts
of different hybrid graphs could differ significantly, affecting the
smoothness of transitions and the user’s mental map.
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