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Abstract. Techniques for drawing graphs based on force-directed place-
ment and virtual physical models have proven surprisingly successful
in producing good layouts of undirected graphs. Aspects of symmetry,
structure, clustering and reasonable vertex distribution arise from initial,
formless clouds of points. However, when nodes must be labeled and point
vertices are replaced by non-point vertices, simple force-directed models
produce unreadable drawings, even for a moderate number of nodes. This
paper describes the application of two post-processing techniques that
can be applied to any initial vertex layout to produce uncluttered layouts
with non-point nodes.

1 Introduction

In general, drawing undirected graphs is problematic. The difficulty lies in there
being too much freedom. If structure i1s imposed on the graph, workable tech-
niques arise. For example, if the graph is interpreted to have a directed flow, one
can employ the Sugiyama-style algorithms[25,12]. Alternatively, one can suitably
restrict the layout style in order to get a handle on the problem. As an example
here, we can consider the class of orthogonal layouts, for which a collection of
well-developed and analyzed algorithms is available[26,27,8]. But without us-
ing such restrictions, there is; at present, no simple non-heuristic algorithm for
efficiently drawing general undirected graphs.

The most effective techniques for handling undirected graphs are based on
virtual physical models. These techniques, going back to Eades[6] and, compu-
tationally, to Kruskal[17], represent the vertices of a graph as physical objects
subject to various forces, natural and unnatural. Some subset of the forces en-
codes the edge information of the graph, typically as an attractive force between
the two endpoints of the edge. The object then becomes one of repositioning
the nodes in order to minimize the energy of the system or to achieve a stable
configuration vis-a-vis the forces acting on the particles. Standard techniques,
such as steepest descent or discrete iteration, can be used to search for the de-
sired configuration, although there is always the possibility of only finding a local
minimum. Once the final node positions are determined, the drawing is typically
completed by connecting edge endpoints with line segments.

In practice, these layout methods are remarkably good, especially given the
naive nature of the algorithms (cf. [18,7]). The resulting drawings typically cap-
ture many symmetries of the graph, while avoiding the expensive computations



Fig. 1. The effect of non-point nodes

involved in explicitly looking for symmetries[19]. In addition, these methods
identify significant clusters of nodes while producing a reasonable distribution
of the nodes. There has been a variety of work on this class of algorithms[14,
10,4,9,24,2,15,13, 3], leading to some quite efficient algorithms that can handle
“medium-sized” graphs.

Despite the efficacy of these approaches, problems arise when they are ap-
plied to the practical case of drawings with non-point nodes. Due to the varying
shapes and sizes of the nodes, the resulting drawings tend to be cluttered, with
nodes overlapping, if not totally hiding, each other, and edges visually lost in
the confusion of being routed over or under the nodes. These problems are par-
ticularly prevalent in the common case of graphs with little symmetry and much
connectivity. A typical example is shown in Fig. 1. Even modest sized graphs
become unreadable. Despite this, such drawings appear in the literature.

A simple solution is to scale the drawing up, while preserving node sizes, until
the nodes no longer overlap (cf. Fig. 2). Although this is simple and creates a
similar layout, preserving symmetries, it can be wasteful of space, and one must
still handle edge-node overlaps. We ask if there is a better way to modify an initial
layout, repositioning the nodes to avoid overlap, while preserving proximity,
clusters and the overall structure and layout, and using less area. Given that
most of the graphs that arise in practice have little symmetry, we are willing to
forego preserving symmetries.

This paper describes the use of two general-purpose post-processing mech-
anisms for improving these layouts to make the drawings more readable using
modest additional area. Inspired by work of Lyons et al.[21], the first pass re-
moves overlapping nodes by iteratively constructing a Voronoi diagram for the
graph and moving nodes within their Voronoi cells. The second pass, based on



previous edge routing work[5], draws edges as smooth curves to avoid node-edge
overlaps.

In the following section of this paper, we present a more detailed description
of the post-processing heuristics that we employ. This is followed by a discus-
sion of our current implementation of these heuristics, and sample output and
timings. We conclude with a consideration of related work and future avenues
for this work.

2 Cleaning the Layout

Given a cluttered layout, such as the one shown in Figure 1, our goal is simple:
gradually adjust the nodes until there is adequate space between them, while
trying to preserve their relative positions and distances, and then construct the
edges as smooth curves avoiding the nodes.

To achieve the first part, we use a variant of a technique developed by Lyons
to break up clusters of nodes in a graph drawing and achieve a more uniform
distribution. In our version, we construct a window containing the centers of all
the vertices, and then construct the Voronoi diagram relative to this window,
using the vertex centers as sites. The centroid of the Voronoi cell associated
with a vertex represents the point most removed from any other vertex, and
it is to that point we move the vertex. By iterating this process, the vertices
move away from each other, reducing overlaps. At the same time, this motion
largely maintains the relative node positions from the initial layout, as desired.
Of course, if the current window is not large enough, each vertex will converge to
the centroid of 1ts cell and no further adjustment is possible. At times, therefore,
it 1s necessary to increase the window size and allow the drawing as a whole to
expand. Eventually, the repositionings and expansions are sufficient to remove
all node overlaps.

Once the nodes have been moved so that there are no overlaps, we then draw
the edges. We do not want to use line segments since, even with the additional
space, they will conflict with the node representations and obscure the graph
structure. Basically, edges should avoid nodes except for endpoints. The use of
polylines is possible, but we rejected these for aesthetic and cognitive reasons!.
We feel that some form of smooth curve works best for edges, reducing to a
straight line where possible.

To construct a curve representing an edge, we first find the shortest path
connecting the midpoints of the two nodes and avoiding the interiors of any
other nodes. This relies on Dijkstra’s algorithm and a one-time construction of
the visibility graph of the vertices of the polygonal nodes?. We then attempt
to connect the two nodes by a line segment or a Bezier curve segment. If none
of these can avoid crossing into the interior of a node, we find the vertex on

1 A further discussion of these issues, and our view of them, can be found in Dobkin
et al.[3].

2 The cost of constructing the visibility graph is amortized over the construction of all
the edges.



the shortest path furthest from the trial curve, break the problem into two
subproblems and solve each recursively. Further details can be found in [5].

3 Implementation

Our current prototype implementation is based on a simple pipeline of two pro-
grams, with two elements repeated and using the dot[11] format for describing
graphs. The first component of the pipeline is neato[16], which takes an undi-
rected, attributed graph and lays out the vertices as points using an implemen-
tation of the Kamada-Kawai[l4] algorithm, itself a close relative of Kruskal’s
multidimensional scaling approach [17,3]. In addition to determining node co-
ordinates, it also specifies the polygon associated with a node3.

The second component of the pipeline takes the nodes and their enclosing
polygons, and radially expands the polygons by a given amount. This ensures
that there is adequate space between the nodes in the final layout. In addition, it
determines an initial enclosing window for the vertices, either from user specifi-
cations or by expanding the enclosing isothetic rectangle by a given percentage,
typically 5%. It then applies the procedure, described in the previous section,
of iteratively computing the Voronoi diagram of the vertices and moving each
vertex to the centroid of its Voronoi cell, expanding the window when necessary,
until none of the expanded polygons overlap. It then emits the graph with the
new node positions. We use Fortune’s O(nlogn) algorithm to compute Voronoi
diagrams. Polygon intersection checking uses a simplified version of the linear
algorithm found in O’Rourke[22], preceded by a bounding box check.

Despite the basic simplicity of this phase, there 1s still room for many vari-
ations. For example, with each iteration, one must decide which nodes to move
and when to increase the area. Clearly, if the area is increased, the nodes on the
perimeter must be moved in order to take advantage of the new area. Our initial
strategy was to only move overlapping nodes as long as progress was being made,
i.e., the number of overlaps was reduced. If progress was stalled, we increased
the area and moved all the nodes. We found that any more subtle strategies
along these lines (e.g., follow the same strategy as above but increase the area
only if two consecutive iterations show no progress) only increased the number
of 1terations required and the final area. And, in fact, we found that the fewest
iterations and the least area were produced by using the even simpler approach
of always moving all nodes and increasing the area whenever the number of
overlaps does not go down.

The final component of the pipeline is another instantiation of neato. In
this case, it accepts the given node coordinates, without repeating the Kamada-
Kawai phase, and moves to the final layout passes of routing edges as smooth
curves and generating device-dependent output. As with most of our tools, out-
put formats include PostScript, GIF, and HPGL, as well as simple dot output.
The various component algorithms used to construct edges as smooth curves are
described in [5], along with their respective complexities.

# Non-polygons, such as circles and ellipses, are approximated by many-sided polygons.
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Fig. 2. Tidying the graph

4 Examples

As an example of our approach, we applied it to the graph shown in Fig. 1, and
arrived at the drawing given in the left-hand side of Fig. 2. For comparison, the
drawing shown on the right-hand side of Fig. 1 was created by dilating Fig. 1,
preserving node size, until the nodes no longer touched. Each of these figures
is scaled differently to fit the presentation here. If, however, they were scaled
equally, so that corresponding nodes on the 3 graphs would have identical size,
the drawing on the left in Fig. 2 would be 1.46 times larger than the drawing
in Fig. 1, while the drawing on the right would be a factor of 3.9 larger. As
for running times, the simple neato layout took 0.18 seconds® user time. Qur
technique required 3.72 seconds, with 0.18 seconds spent in the initial layout,
0.12 seconds used to adjust the node positions, requiring 25 iterations, and the
rest used to do the final spline routing. Again for comparison, simply scaling the
drawing and then performing the spline routing cost 4.31 seconds.

Table 1 provides additional comparisons between the Voronoi technique and
scaling. We applied both methods to 9 graphs that arisen in practice. Columns
4-6 show, for the Voronoi method, the number of iterations needed to remove
all node overlaps, the (linear) increase in the bounding box needed for the new
layout, and the amount of time this processing took. Columns 7-8 show the
size increase and time to remove node overlaps by scaling. We note that the
Voronoi approach achieves significantly better use of space. It also takes appre-
ciably longer, but this difference is negligible, as the final, edge routing pass
dominates the layout times. The graphs clust.dot, rmf20k50.dot, dpd.dot and
houston.jsa.dot are shown in Figs. 3, 4, 2, and b, respectively.

Additional examples of this technique are shown in Fig. 3 through Fig. 5.
In each case, the left layout shows the original straight-line drawing based on
Kamada-Kawai; the right layout shows the result after applying our two post-
processing adjustments.

* All timings reported were done on an SGI Octane.



Table 1. Comparison of applying the Voronoi and scaling techniques for removing
node-node overlaps

Voronoi Scaling

Graph Nodes|Edges||Iterations| Size | Time Size | Time
increase|(secs.)||increase|(secs.)

tube.dot 10 18 3 1.1 0.005 1.49( 0.008
clust.dot 16 73 8 1.61| 0.045 2.54| 0.016
rmf20k50.dot 20 56 2 1.0/ 0.011 1.49( 0.011
net.dot 24 51 1 1.0/ 0.012 1.50| 0.017
houston.jsa.dot 32 98 2 1.0 0.019 1.64| 0.013
dpd.dot 36 108 25 1.95| 0.316 3.93] 0.031
gte_u.dot 49 260 19 1.77| 0.336 3.02| 0.044
ngk10_4.dot 50 100 16 1.20( 0.294 3.36| 0.042
jho5E.dot 213 269 21 1.78| 1.843 3.24| 0.452
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Fig. 4. rmf20k50.dot



TDVITXROIOE

7

o

/34
D

) >
G S
v "WJ;",

Fig. 5. houston.dot

5 Related Work

Concerning the problem of overlapping objects in straight-line drawings, an al-
ternative approach 1s to modify the virtual physical model to prevent or at least
minimize such overlap. For example, Kamps et al.[15] introduce an additional
energy term representing the amount of overlap of the nodes’ bounding boxes.
Similarly, Wang and Miyamoto [28] modify the forces between nodes, so that
if two nodes overlap there is no attractive force between them and there i1s a
stronger repulsive force. Davidson and Harel[4] make nodes and non-incident
edges repel.

The problem is that imposing an overlap penalty still is no guarantee that
objects are correctly separated. This is particularly apparent in some layouts
of large or dense graphs. More research is needed to understand possible in-
terference between the new energy terms and the original model. Besides, the
straight-line edge restriction can impose other problems.

Fisheye techniques [23] can adjust spacing between layout objects, but are
intended for interactive environments. It is not clear how they can be applied
successfully to static layout.

Wills [29] proposes a post-processing phase for virtual physical models. The
method is to compute nearest neighbors for all nodes, and increase the separation
between node pairs that are too close. It is not clear what happens if there is
not enough space locally.



As previously mentioned, our approach was inspired by Lyons et al.[21,20].
They propose improving layouts of points in the plane that typically represent
graph nodes. The goal is to more evenly distribute the points within a fixed layout
window, while maintaining the basic “shape” of a drawing. The method relies
on measures of similarity and distribution. Layouts are updated iteratively by
either a Voronoi diagram or spring model, moving points until either the drawing
becomes too dissimilar to the input, or a desired level of distribution has been
reached. The proposed models for similarity and distribution do not take into
account non-point nodes or edges of the graph.

Edge routing can be handled by any technique that satisfies certain aesthetic
goals (e.g. make paths that are short, smooth and avoid unnecessary inflections).
An alternative to our method described in Section 2 was proposed by Abello and
Gansner [1].

6 Conclusions and Future Work

The proposed approach makes readable layouts by a hybrid of virtual physical
modeling, geometric constraints and representing edges as smooth curves. The
approach is compatible with any initial layout. The resulting diagrams preserve
much of the original structure, attempt to use little additional space, and can
be constructed efficiently.

This technique also raises some interesting problems. One area concerns the
layout itself. The technique prevents unwanted node-node and node-edge inter-
sections, but doesn’t address edge-edge intersections. Such intersections can be
seen in Figure 2. Global edge routing might be a good way of attacking this prob-
lem. The idea would be to determine when edge routes might interact (perhaps
when path edges are shared or are proximate) and then to introduce new barriers
corresponding to implied routing constraints. Alternatively, it might be possible
to introduce some aspects of edge routing into the force-directed model, thereby
connecting node and edge layout more closely, as is done in most Sugiyama-style
layouts for directed graphs.

Another issue is that the technique of using Voronoi diagrams to break up
clusters of nodes really represents a family of algorithms, and leaves open the
decisions about what nodes to move, where to move them, when to increase
the drawing’s bounding polygon, and what type of bounding polygon to use.
We discussed some of the variations we tried in Section 3. Adjustment of node
positions also potentially interacts with the force model and disturbs local sym-
metry. More experiments are needed to understand these interactions and good
tradeoffs. We notice that our layouts tend to disperse nodes more than necessary.

There is a question concerning whether Voronoi diagrams with polygonal
node shapes as sites make better layouts. If so, there is a problem of how to
compute these diagrams incrementally as nodes move. Finally, there is a need
for robust implementations.
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