
LIBPATH(3) LIBPATH(3)

NAME
libpathplan − finds and smooths shortest paths

SYNOPSIS
#include <graphviz/pathplan.h>

typedef struct Pxy_t {
double x, y;

} Pxy_t;

typedef struct Pxy_t Ppoint_t;
typedef struct Pxy_t Pvector_t;

typedef struct Ppoly_t {
Ppoint_t *ps;
int pn;

} Ppoly_t;

typedef Ppoly_t Ppolyline_t;

typedef struct Pedge_t {
Ppoint_t a, b;

} Pedge_t;

typedef struct vconfig_s vconfig_t;

#define POLYID_NONE
#define POLYID_UNKNOWN

int Pshortestpath(Ppoly_t *boundary, Ppoint_t endpoints[2], Ppolyline_t *output_route);

vconfig_t *Pobsopen(Ppoly_t **obstacles, int n_obstacles);
int Pobspath(vconfig_t *config, Ppoint_t p0, int poly0, Ppoint_t p1, int poly1, Ppolyline_t *output_route);
void Pobsclose(vconfig_t *config);

int Proutespline (Pedge_t *barriers, int n_barriers, Ppolyline_t input_route, Pvector_t endpoint_slopes[2],
Ppolyline_t *output_route);

int Ppolybarriers(Ppoly_t **polys, int n_polys, Pedge_t **barriers, int *n_barriers);

DESCRIPTION
libpathplan provides functions for creating spline paths in the plane that are constrained by a polygonal
boundary or obstacles to avoid. All polygons must be simple, but need not be convex.

int Pshortestpath(Ppoly_t *boundary, Ppoint_t endpoints[2], Ppolyline_t *output_route);
The functionPshortestpath finds a shortest path between two points in a simple polygon. The polygon is
specified by a list of its vertices, in either clockwise or counterclockwise order. You pass endpoints interior
to the polygon boundary. A shortest path connecting the points that remains in the polygon is returned in
output_route. If either endpoint does not lie in the polygon, -1 is returned; otherwise, 0 is returned on suc-
cess. Thearray of points inoutput_route is static to the library. It should not be freed, and should be used
before another call toPshortestpath.

vconfig_t *Pobsopen(Ppoly_t **obstacles, int n_obstacles);
Pobspath(vconfig_t *config, Ppoint_t p0, int poly0, Ppoint_t p1, int poly1, Ppolyline_t *output_route);

01 APRIL 1997 1

LIBPATH(3) LIBPATH(3)

void Pobsclose(vconfig_t *config);
These functions find a shortest path between two points in the plane that contains polygonal obstacles
(holes). Pobsopen creates a configuration (an opaque struct of type vconfig_t) on a set of obstacles.The
n_obstacles obstacles are given in the arrayobstacles; the points of each polygon should be in clockwise
order. The functionPobsclose frees the data allocated inPobsopen.

Pobspath finds a shortest path between the endpoints that remains outside the obstacles. If the endpoints
are known to lie inside obstacles, poly0 or poly1 should be set to the index in the obstacles array. If an end-
point is definitely not inside an obstacle, then POLYID_NONE should be passed. If the caller has not
checked, then POLYID_UNKNOWN should be passed, and the path library will perform the test. The
resulting shortest path is returned inoutput_route. Note that this function does not provide for a boundary
polygon. The array of points stored inoutput_route are allocated by the library, but should be freed by the
user.

int Proutespline (Pedge_t *barriers, int n_barriers, Ppolyline_t input_route, Pvector_t end-
point_slopes[2], Ppolyline_t *output_route);
This function fits a cubic B-spline curve to a polyline path. The curve is constructed to avoid a set of
n_barriers barrier line segments specified in the arraybarriers. If you start with polygonal obstacles, you
can supply each polygon’s edges as part of the barrier list. The polyline input_route provides a template for
the final path; it is usually the output_route of one of the shortest path finders, but it can be any simple path
that doesn’t cross any barrier segment. Theinput also allows the specification of desired slopes at the end-
points viaendpoint_slopes. These are specified as vectors. For example, to have an angle ofT at an endpo-
ing, one could use(cos(T),sin(T)). A vector (0,0) means unconstrained slope.The output is returned in
output_route and consists of the control points of the B-spline. The function return 0 on success; a return
value of -1 indicates failure. Thearray of points inoutput_route is static to the library. It should not be
freed, and should be used before another call toProutespline.

int Ppolybarriers(Ppoly_t **polys, int n_polys, Pedge_t **barriers, int *n_barriers);
This is a utility function that converts an input list of polygons into an output list of barrier segments. The
array of points inbarriers is static to the library. It should not be freed, and should be used before another
call toPpolybarriers. The function returns 1 on success.

BUGS
The functionProutespline does not guarantee that it will preserve the topology of the input path as regards
the boundaries. For example, if some of the segments correspond to a small polygon, it may be possible
that the final path has flipped over the obstacle.

AUTHORS
David Dobkin (dpd@cs.princeton.edu), Eleftherios Koutsofios (ek@research.att.com), Emden Gansner
(erg@research.att.com).

01 APRIL 1997 2

