LIBPATH(3) LIBPATH(3)

NAME
libpathplan - finds and smooths shortest paths

SYNOPSIS
#include <graphviz/pathplan.h>

typedef struct Pxy _t {
double x, y;
}Pxy_t;

typedef struct Pxy_t Ppoint_t;
typedef struct Pxy_t Pvector_t;

typedef struct Ppoly _t {
Ppoint_t *ps;
int pn;

} Ppoly_t;

typedef Ppoly_t Ppolyline_t;

typedef struct Pedge_t {
Ppoint_t a, b;
} Pedge_t;

typedef struct vconfig_s vconfig_t;

#define POLYID_NONE
#define POLYID_UNKNOWN

int Pshortestpath(Ppoly_t *boundaBpoint_t endpoints[2], Ppolyline_t *output_route);

vconfig_t *Pobsopen(Ppoly_t **obstacles, int n_obstacles);
int Pobspath(vconfig_t *config, Ppoint_t pO0, int poly0, Ppoint_t p1, int polyl, Ppolyline_t *output_route);
void Pobsclose(vconfig_t *config);

int Proutespline (Pedge_t *barriers, int n_barriers, Ppolyline_t input_route, Pvector_t endpoint_slopes|[2],
Ppolyline_t *output_route);

int Ppolybarriers(Ppoly_t **polys, int n_polys, Pedge_t **barriers, int *n_barriers);

DESCRIPTION
libpathplan provides functions for creating spline paths in the plane that are constrained by a polygonal
boundary or obstacles tead. All polygons must be simple, but need not bevern

int Pshortestpath(Ppoly_t *boundary, Ppoint_t endpoints[2], Ppolyline_t *output_route);
The functionPshortestpath finds a shortest path betweerotpoints in a simple polygon. The polygon is
specified by a list of its vertices, in either clockwise or counterclockwise. ovderpass endpoints interior
to the polygon boundaryA shortest path connecting the points that remains in the polygon is returned in
output_route. If either endpoint does not lie in the polygon, -1 is returned; otherwise, 0 is returned on suc-
cess. Tharray of points iroutput_route is static to the libraryit should not be freed, and should be used
before another call tBshortestpath.

veonfig_t *Pobsopen(Ppoly_t **obstacles, int n_obstacles);
Pobspath(vconfig_t *config, Ppoint_t p0, int poly0O, Ppoint_t p1, int polyl, Ppolyline_t *output_route);

01 APRIL 1997 1

LIBPATH(3) LIBPATH(3)

void Pobsclose(vconfig_t *config);
These functions find a shortest path betweem points in the plane that contains polygonal obstacles
(holes). Pobsopen creates a configuration (an opaque struct of type vconfig_t) on a set of obstédes.
n_obstacles obstacles are gén in the arrayobstacles; the points of each polygon should be in clockwise
order The functionPobsclose frees the data allocated Fobsopen.

Pobspath finds a shortest path between the endpoints that remains outside the obstacles. If the endpoints
are known to lie inside obstacles, poly0 or polyl should be set to theiintle obstacles arrayf an end-

point is definitely not inside an obstacle, then POLYID_NONE should be passed. If the caller has not
checled, then POYID_UNKNOWN should be passed, and the path library will perform the test. The
resulting shortest path is returnedoutput_route. Note that this function does not provide for a boundary
polygon. The array of points storedaduatput_route are allocated by the librariput should be freed by the

user.

int Proutespline (Pedge_t *barriers, int n_barriers, Ppolyline_t input_route, Pvector_t end-
point_slopes[2], Ppolyline_t *output_route);
This function fits a cubic B-spline cwewo a wlyline path. The cum is onstructed to \id a set of
n_barriers barrier line segments specified in the arpayriers. If you start with polygonal obstacles, you
can supply each polygan&lges as part of the barrier list. The polyline input_routeiges a template for
the final path; it is usually the output_route of one of the shortest path finaleits;dn be apsimple path
that doesit'cross ag barrier sgment. Thdnput also allows the specification of desired slopes at the end-
points viaendpoint_slopes. These are specified asotors. Br example, to hae an angle of T at an endpo-
ing, one could usécos(T),sin(T)). A vector (0,0) means unconstrained slo@ée output is returned in
output_route and consists of the control points of the B-spline. The function return 0 on success; a return
value of -1 indicatesdilure. Thearray of points inoutput_route is static to the librarylt should not be
freed, and should be used before another c<datespline.

int Ppolybarriers(Ppoly_t **polys, int n_polys, Pedge_t **barriers, int *n_barriers);
This is a utility function that camrts an input list of polygons into an output list of barriegrsents. The
array of points irbarriersis static to the librarylt should not be freed, and should be used before another
call toPpolybarriers. The function returns 1 on success.

BUGS
The functionProutespline does not guarantee that it will presetiie topology of the input path agyeeds
the boundaries. For example, if some of the segments correspond to a small polygon, it may be possible
that the final path has flippeda the obstacle.

AUTHORS
David Dobkin (dpd@cs.princeton.edu), Eleftheriosutsofios (ek@research.att.com), Emden Gansner
(erg@research.att.com).

01 APRIL 1997 2

